We study the asymptotic behavior of convex Cauchy hypersurfaces on maximal globally hyperbolic spatially compact space–times of constant curvature. We generalise the result of Belraouti (Annales de l’institut Fourier 64(2):457–466, 2015) to the (2+1) de Sitter and anti de Sitter cases. We prove that in these cases the level sets of quasi-concave times converge in the Gromov equivariant topology, when time goes to 0, to a real tree. Moreover, this limit does not depend on the choice of the time function. We also consider the problem of asymptotic behavior in the flat (n+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(n+1)$$\end{document} dimensional case. We prove that the level sets of quasi-concave times converge in the Gromov equivariant topology, when time goes to 0, to a CAT(0) metric space. Moreover, this limit does not depend on the choice of the time function.