In the theory ofK-quasiconformal mappings, Mori's theorem shows thatK-quasiconformal mappings on the unit disk satisfy the Hölder condition, where the coefficient 16 is best possible. In this paper, we prove that self-μ(z)-homeomorphisms on the unit disk have an analogical result to Mori's theorem when the integral mean dilatations are controlled by log function. An unimprovable inequality is obtained.