Spectrum of a class of fourth order left-definite differential operators

被引:0
|
作者
Yun-lan Gao
Jiong Sun
机构
[1] Inner Mongolia Univ. of Tech.,Dept. of Math.
[2] Inner Mongolia Univ.,Dept. of Math.
关键词
left-definite differential operator; right-definite differential operator; Krein space; spectrum; eigenvalue; 34L16;
D O I
暂无
中图分类号
学科分类号
摘要
The spectrum of a class of fourth order left-definite differential operators is studied. By using the theory of indefinite differential operators in Krein space and the relationship between left-definite and right-definite operators, the following conclusions are obtained: if a fourth order differential operator with a self-adjoint boundary condition that is left-definite and right-indefinite, then all its eigenvalues are real, and there exist countably infinitely many positive and negative eigenvalues which are unbounded from below and above, have no finite cluster point and can be indexed to satisfy the inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \cdots \leqslant \lambda _{ - 2} \leqslant \lambda _{ - 1} \leqslant \lambda _{ - 0} < 0 < \lambda _0 \leqslant \lambda _1 \leqslant \lambda _2 \leqslant \cdots . $$\end{document}
引用
收藏
页码:51 / 56
页数:5
相关论文
共 50 条