Reflexivity of the automorphism and isometry groups of C*-algebras in BDF theory

被引:0
|
作者
L. Molnár
机构
[1] Institute of Mathematics,
[2] Lajos Kossuth University,undefined
[3] 4010 Debrecen,undefined
[4] P.O. Box 12,undefined
[5] Hungary,undefined
来源
Archiv der Mathematik | 2000年 / 74卷
关键词
Unit Disc; Compact Operator; Isometry Group; Important Extension; Continuous Complex;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the automorphism and isometry groups of any extension of the C*-algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\cal C (\cal H)$\end{document} of all compact operators by a separable commutative C*-algebra are algebraically reflexive. Concerning the possibly most important extensions by the algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $C(\Bbb T)$\end{document} of all continuous complex valued functions on the perimeter of the unit disc, we show that these groups are topologically nonreflexive.
引用
收藏
页码:120 / 128
页数:8
相关论文
共 50 条