Connecting reservoir computing with statistical forecasting and deep neural networks

被引:0
|
作者
Lina Jaurigue
Kathy Lüdge
机构
[1] Institut für Theoretische Physik,Technische Universität Berlin
[2] Institut für Physik,Technische Universität Ilmenau
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Among the existing machine learning frameworks, reservoir computing demonstrates fast and low-cost training, and its suitability for implementation in various physical systems. This Comment reports on how aspects of reservoir computing can be applied to classical forecasting methods to accelerate the learning process, and highlights a new approach that makes the hardware implementation of traditional machine learning algorithms practicable in electronic and photonic systems.
引用
收藏
相关论文
共 50 条
  • [1] Connecting reservoir computing with statistical forecasting and deep neural networks
    Jaurigue, Lina
    Luedge, Kathy
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [2] Reservoir computing vs. neural networks in financial forecasting
    Georgopoulos, Spyros P.
    Tziatzios, Panagiotis
    Stavrinides, Stavros G.
    Antoniades, Ioannis P.
    Hanias, Michael P.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL ECONOMICS AND ECONOMETRICS, 2023, 13 (01) : 1 - 22
  • [3] Federated Reservoir Computing Neural Networks
    Bacciu, Davide
    Di Sarli, Daniele
    Faraji, Pouria
    Gallicchio, Claudio
    Micheli, Alessio
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [4] Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics
    Vlachas, P. R.
    Pathak, J.
    Hunt, B. R.
    Sapsis, T. P.
    Girvan, M.
    Ott, E.
    Koumoutsakos, P.
    [J]. NEURAL NETWORKS, 2020, 126 : 191 - 217
  • [5] Neural Networks for Forecasting Daily Reservoir Inflows
    Karimi-Googhari, Shahram
    Feng, Huang Yuk
    Ghazali, Abdul Halim B.
    Shui, Lee Teang
    [J]. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2010, 18 (01): : 33 - 41
  • [6] Reservoir inflow forecasting using neural networks
    Subramanian, C
    Manry, MT
    Naccarino, J
    [J]. PROCEEDINGS OF THE AMERICAN POWER CONFERENCE, VOL 61 - I AND II, 1999, 61 : 220 - 225
  • [7] Connecting Deep Neural Networks with Symbolic Knowledge
    Kumar, Arjun
    Oates, Tim
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 3601 - 3608
  • [8] Deep Reservoir Neural Networks for Trees
    Gallicchio, Claudio
    Micheli, Alessio
    [J]. INFORMATION SCIENCES, 2019, 480 : 174 - 193
  • [9] Deep Phasor Networks: Connecting Conventional and Spiking Neural Networks
    Olin-Ammentorp, Wilkie
    Bazhenov, Maxim
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [10] Shallow Neural Networks to Deep Neural Networks for Probabilistic Wind Forecasting
    Arora, Parul
    Panigrahi, B. K.
    Suganthan, P. N.
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND INTELLIGENT SYSTEMS (ICCCIS), 2021, : 377 - 382