Conformal and affine Hamiltonian dynamics of general relativity

被引:0
|
作者
Victor N. Pervushin
Andrej B. Arbuzov
Boris M. Barbashov
Rashid G. Nazmitdinov
Andrzej Borowiec
Konstantin N. Pichugin
Alexander F. Zakharov
机构
[1] Joint Institute for Nuclear Research,Bogoliubov Laboratory of Theoretical Physics
[2] University of Dubna,Department of Higher Mathematics
[3] Universitat de les Illes Balears,Department de Física
[4] University of Wrocław,Institute of Theoretical Physics
[5] Kirensky Institute of Physics,undefined
[6] Institute of Theoretical and Experimental Physics,undefined
来源
关键词
Conformal cosmology; General relativity; Hamiltonian dynamics; Casimir energy;
D O I
暂无
中图分类号
学科分类号
摘要
The Hamiltonian approach to the General Relativity is formulated as a joint nonlinear realization of conformal and affine symmetries by means of the Dirac scalar dilaton and the Maurer–Cartan forms. The dominance of the Casimir vacuum energy of physical fields provides a good description of the type Ia supernova luminosity distance—redshift relation. Introducing the uncertainty principle at the Planck’s epoch within our model, we obtain the hierarchy of the Universe energy scales, which is supported by the observational data. We found that the invariance of the Maurer–Cartan forms with respect to the general coordinate transformation yields a single-component strong gravitational waves. The Hamiltonian dynamics of the model describes the effect of an intensive vacuum creation of gravitons and the minimal coupling scalar (Higgs) bosons in the Early Universe.
引用
收藏
页码:2745 / 2783
页数:38
相关论文
共 50 条
  • [1] Conformal and affine Hamiltonian dynamics of general relativity
    Pervushin, Victor N.
    Arbuzov, Andrej B.
    Barbashov, Boris M.
    Nazmitdinov, Rashid G.
    Borowiec, Andrzej
    Pichugin, Konstantin N.
    Zakharov, Alexander F.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2012, 44 (11) : 2745 - 2783
  • [2] Conformal Hamiltonian dynamics of general relativity
    Arbuzov, A. B.
    Barbashov, B. M.
    Nazmitdinov, R. G.
    Pervushin, V. N.
    Borowiec, A.
    Pichugin, K. N.
    Zakharov, A. F.
    [J]. PHYSICS LETTERS B, 2010, 691 (05) : 230 - 233
  • [3] The reduced Hamiltonian of general relativity and the σ-constant of conformal geometry
    Fischer, AE
    Moncrief, V
    [J]. MATHEMATICAL AND QUANTUM ASPECTS OF RELATIVITY AND COSMOLOGY, 2000, 536 : 70 - 101
  • [4] The Hamiltonian of Einstein affine-metric formulation of General Relativity
    Kiriushcheva, N.
    Kuzmin, S. V.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2010, 70 (1-2): : 389 - 422
  • [5] The Hamiltonian of Einstein affine-metric formulation of General Relativity
    N. Kiriushcheva
    S. V. Kuzmin
    [J]. The European Physical Journal C, 2010, 70 : 389 - 422
  • [6] Proper time dynamics in general relativity and conformal unified theory
    Gyngazov, LN
    Pawlowski, M
    Pervushin, VN
    Smirichinski, VI
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1998, 30 (12) : 1749 - 1773
  • [7] On the role of conformal three-geometries in the dynamics of general relativity
    Szabados, LB
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (09) : 2375 - 2391
  • [8] Proper Time Dynamics in General Relativity and Conformal Unified Theory
    L. N. Gyngazov
    M. Pawlowski
    V. N. Pervushin
    V. I. Smirichinski
    [J]. General Relativity and Gravitation, 1998, 30 : 1749 - 1773
  • [10] IMPROVED HAMILTONIAN FOR GENERAL RELATIVITY
    REGGE, T
    TEITELBOIM, C
    [J]. PHYSICS LETTERS B, 1974, B 53 (01) : 101 - 105