Necessary and sufficient conditions for the bounds of the commutator of a Littlewood-Paley operator with fractional differentiation

被引:0
|
作者
Xiongtao Wu
Yanping Chen
Liwei Wang
Wenyu Tao
机构
[1] Hengyang Normal University,Department of Mathematics, School of Mathematics and Statistics
[2] University of Science and Technology Beijing,Department of Applied Mathematics, School of Mathematics and Physics
[3] Anhui Polytechnic University,School of Mathematics and Physics
[4] University of Science and Technology Beijing,School of Mathematics and Physics
来源
关键词
Commutator; Littlewood-Paley operator; Rough kernel; BMO Sobolev spaces; 42B20; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
For b∈Lloc(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in L_{\mathrm{loc}}({\mathbb {R}}^n)$$\end{document} and 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha <1$$\end{document}, we use fractional differentiation to define a new type of commutator of the Littlewood-Paley g-function operator, namely gΩ,α;b(f)(x)=(∫0∞|1t∫|x-y|≤tΩ(x-y)|x-y|n+α-1(b(x)-b(y))f(y)dy|2dtt)1/2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g_{\Omega ,\alpha ;b}(f )(x) =\bigg (\int _0^\infty \bigg |\frac{1}{t} \int _{|x-y|\le t}\frac{\Omega (x-y)}{|x-y|^{n+\alpha -1}}(b(x)-b(y))f(y)\,dy\bigg |^2\frac{dt}{t}\bigg )^{1/2}. \end{aligned}$$\end{document}Here, we obtain the necessary and sufficient conditions for the function b to guarantee that gΩ,α;b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\Omega ,\alpha ;b}$$\end{document} is a bounded operator on L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\mathbb {R}}^n)$$\end{document}. More precisely, if Ω∈L(log+L)1/2(Sn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \in L(\log ^+ L)^{1/2}{(S^{n-1})}$$\end{document} and b∈Iα(BMO)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in I_{\alpha }(BMO)$$\end{document}, then gΩ,α;b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\Omega ,\alpha ;b}$$\end{document} is bounded on L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\mathbb {R}}^n)$$\end{document}. Conversely, if gΩ,α;b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\Omega ,\alpha ;b}$$\end{document} is bounded on L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\mathbb {R}}^n)$$\end{document}, then b∈Lipα(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b \in Lip_\alpha ({\mathbb {R}}^n)$$\end{document} for 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha < 1$$\end{document}.
引用
收藏
页码:2109 / 2132
页数:23
相关论文
共 50 条
  • [1] Necessary and sufficient conditions for the bounds of the commutator of a Littlewood-Paley operator with fractional differentiation
    Wu, Xiongtao
    Chen, Yanping
    Wang, Liwei
    Tao, Wenyu
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (04) : 2109 - 2132
  • [2] Necessary and sufficient conditions for the bounds of the Calderon type commutator for the Littlewood-Paley operator
    Chen, Yanping
    Ding, Yong
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 130 : 279 - 297
  • [3] Necessary and sufficient conditions for the quantitative weighted bounds of the Calderon type commutator for the Littlewood-Paley operator
    Chen, Yanping
    Chang, Xiaoxuan
    Wang, Teng
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (06)
  • [4] SHARP ESTIMATES FOR MULTILINEAR COMMUTATOR OF LITTLEWOOD-PALEY OPERATOR
    Hao, Jinliang
    Liu, Lanzhe
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 23 (01): : 49 - 59
  • [5] LIPSCHITZ ESTIMATES FOR MULTILINEAR COMMUTATOR OF LITTLEWOOD-PALEY OPERATOR
    Shen, Ying
    Liu, Lanzhe
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, (27): : 209 - 224
  • [6] Lipschitz estimates for multilinear commutator of Littlewood-Paley operator
    Zhou X.
    [J]. Rendiconti del Circolo Matematico di Palermo, 2009, 58 (2) : 297 - 310
  • [7] WEIGHTED ENDPOINT ESTIMATES FOR MULTILINEAR COMMUTATOR OF LITTLEWOOD-PALEY OPERATOR
    Wu, Changhong
    Zhang, Meng
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (03): : 321 - 339
  • [8] SHARP FUNCTION ESTIMATE FOR MULTILINEAR COMMUTATOR OF LITTLEWOOD-PALEY OPERATOR
    Peng Meijun
    Liu Lanzhe
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2010, 34 : 103 - 112
  • [9] BOUNDEDNESS FOR MULTILINEAR COMMUTATOR ASSOCIATED WITH LITTLEWOOD-PALEY OPERATOR ON TWO SPACES
    Zhang, Mingjun
    Guo, Yanfeng
    Li, Naixiong
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2015, 30 (01): : 1 - 12
  • [10] Continuity for Littlewood-Paley operator and its commutator on Herz type Hardy spaces
    Zhou X.
    [J]. Lobachevskii Journal of Mathematics, 2009, 30 (3) : 243 - 251