High Temperature B2 Precipitation in Ru-Containing Refractory Multi-principal Element Alloys

被引:0
|
作者
Carolina Frey
Haojun You
Sebastian Kube
Glenn H. Balbus
Kaitlyn Mullin
Scott Oppenheimer
Collin S. Holgate
Tresa M. Pollock
机构
[1] University of California,Materials Department
[2] Air Force Research Laboratory,undefined
[3] Materials and Manufacturing Directorate,undefined
[4] General Electric Global Research Center,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Ru-based B2 phases present an opportunity to design two-phase BCC + B2 refractory multi-principal element alloys (RMPEAs) with higher temperature stability compared to B2 phases observed in RMPEAs. In this investigation, seven equiatomic Ru-containing RMPEAs were characterized in the as-cast and annealed conditions. Of the two Hf-free alloys, Mo25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{25}$$\end{document}Nb25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{25}$$\end{document}Ta25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{25}$$\end{document}Ru25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{25}$$\end{document} was determined to be a single-phase B2 alloy and Mo20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Nb20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Ta20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}W20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Ru20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document} was single-phase BCC. Within all five Hf-containing alloys, phases formed during solidification included HfRu–B2, disordered BCC, and HfO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} phases. The Hf-containing alloys also precipitated B2 nanoparticles within the BCC phases after further cooling in the solid. All phases were still present after annealing at 1500 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}C to 1600 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}C. The HfRu–B2 nanoparticles in as-cast Hf20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Mo20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Nb20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Ta20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Ru20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document} were characterized by transmission electron microscopy (TEM), and a lattice misfit of < 1 pct between the BCC phase and B2 nanoparticles was calculated. Room-temperature micropillar compression tests were performed on BCC + B2 nanoparticle regions in annealed Hf20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Mo20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Nb20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Ta20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Ru20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}. Post-mortem TEM analysis revealed precipitate shearing by dislocations, resulting in paired dislocations, along with bowing of dislocations around precipitates. Utilizing the insights from this investigation, compositions for RMPEAs with solutionable B2 precipitates stable above 1200 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}C are suggested.
引用
收藏
页码:1739 / 1764
页数:25
相关论文
共 50 条
  • [1] High Temperature B2 Precipitation in Ru-Containing Refractory Multi-principal Element Alloys
    Frey, Carolina
    You, Haojun
    Kube, Sebastian
    Balbus, Glenn H.
    Mullin, Kaitlyn
    Oppenheimer, Scott
    Holgate, Collin S.
    Pollock, Tresa M.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2024, 55 (06): : 1739 - 1764
  • [2] Research progress in multi-principal element alloys containing coherent BCC/B2 structure
    Dong Ya-guang
    Chen Shang
    Wang Jun-sheng
    Jin Ke
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2021, 49 (02): : 1 - 9
  • [3] A high stability B2-containing refractory multi-principal element alloy
    Frey, Carolina
    Silverstein, Ravit
    Pollock, Tresa M.
    ACTA MATERIALIA, 2022, 229
  • [4] Enhanced precipitation strengthening of multi-principal element alloys by κ- and B2-phases
    Kies, Fabian
    Wu, Xiaoxiang
    Hallstedt, Bengt
    Li, Zhiming
    Haase, Christian
    MATERIALS & DESIGN, 2021, 198 (198)
  • [5] Refractory multi-principal element alloys with solution and aged HfRu-B2 precipitates
    Frey, Carolina
    Neuman, Benjamin
    Botros, Anthony
    Kube, Sebastian A.
    Pollock, Tresa. M.
    SCRIPTA MATERIALIA, 2025, 255
  • [6] Defect accumulation and evolution in refractory multi-principal element alloys
    Zhao, Shijun
    Xiong, Yaoxu
    Ma, Shihua
    Zhang, Jun
    Xu, Biao
    Kai, Ji-Jung
    ACTA MATERIALIA, 2021, 219 (219)
  • [7] Non-coherent nano-precipitation weakens ductile refractory multi-principal element alloys
    Jiang, Wentao
    Wang, Tiantian
    Wang, Xiaohong
    Jiang, Bo
    Wang, Xin
    Wang, Ye
    Xu, Hongyu
    Hu, Maoliang
    Zhu, Dongdong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 924
  • [8] Uniaxial deformation of nanowires in 16 refractory multi-principal element alloys
    Xu, Shuozhi
    Al Mamun, Abdullah
    Mu, Sai
    Su, Yanqing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 959
  • [9] Microstructures and mechanical properties of a precipitation hardened refractory multi-principal element alloy
    Cui, Dingcong
    Yang, Zhongsheng
    Guo, Bojing
    Liu, Linxiang
    Wang, Zhijun
    Li, Junjie
    Wang, Jincheng
    He, Feng
    INTERMETALLICS, 2022, 151
  • [10] Microstructure and properties of novel quinary multi-principal element alloys with refractory elements
    Na-na Guo
    Liang Wang
    Yan-qing Su
    Liang-shun Luo
    Xin-zhong Li
    Jing-jie Guo
    Heng-zhi Fu
    China Foundry, 2015, (05) : 319 - 325