The Centre and the Depth of the Centre for Continuous Maps on Dendrites with Finite Branch Points

被引:0
|
作者
Taixiang Sun
Hongjian Xi
机构
[1] Guangxi University of Finance and Economics,College of Information and Statistics
关键词
Dendrite map; Depth; Centre; 37B05; 37B20; 54H20;
D O I
暂无
中图分类号
学科分类号
摘要
Let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{D}$$\end{document} be a dendrite with finite branch points and f:D→D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbf{D}\rightarrow \mathbf{D}$$\end{document} be continuous. Denote by R(f) and Ω(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (f)$$\end{document} the set of recurrent points and the set of non-wandering points of f respectively. Let Ω0(f)=D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _0 (f)=\mathbf{D}$$\end{document} and Ωn(f)=Ω(f|Ωn-1(f))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _n (f)=\Omega (f|_{\Omega _{n-1} (f)})$$\end{document} for all n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in \mathbf{N}$$\end{document}. The minimal m∈N∪{∞}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in \mathbf{N}\cup \{\infty \}$$\end{document} such that Ωm(f)=Ωm+1(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{m} (f)=\Omega _{m+1} (f)$$\end{document} is called the depth of f. In this note, we show that Ω3(f)=R(f)¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _3(f)=\overline{R(f)}$$\end{document} and the depth of f is at most 3. Furthermore, we show that there exist a dendrite D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{D}$$\end{document} with finite branch points and f∈C0(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in C^0(\mathbf{D})$$\end{document} such that Ω3(f)=R(f)¯≠Ω2(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Omega _3(f)=\overline{R(f)}\ne \Omega _2(f)$$\end{document}.
引用
收藏
页码:697 / 702
页数:5
相关论文
共 50 条
  • [1] The Centre and the Depth of the Centre for Continuous Maps on Dendrites with Finite Branch Points
    Sun, Taixiang
    Xi, Hongjian
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2017, 16 (03) : 697 - 702
  • [2] The centre and the depth of the centre for continuous maps on dendrites with unique branch point
    Su, Guangwang
    Sun, Taixiang
    Li, Lue
    Han, Caihong
    Xia, Guoen
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2020, 282
  • [3] On the centre and the set of ω-limit points of continuous maps on dendrites
    Kocan, Zdenek
    Kornecka-Kurkova, Veronika
    Malek, Michal
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (18) : 2923 - 2931
  • [4] The depths and the attracting centres for continuous maps on local dendrites with the number of branch points being finite
    Su, Guangwang
    Sun, Taixiang
    Zeng, Fanping
    Qin, Bin
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2020, 272
  • [5] Continuous maps of dendrites with finitely many branch points and nonwandering sets
    Arai, T
    Chinen, N
    Suda, T
    [J]. TOPOLOGY PROCEEDINGS, VOL 26, NO 1, 2001-2002, 2002, 26 (01): : 29 - 36
  • [6] On strong sensitive points of continuous maps on dendrites
    Makhrova, Elena
    [J]. EUROPEAN CONFERENCE - WORKSHOP NONLINEAR MAPS AND APPLICATIONS, 2018, 990
  • [7] Remarks on the Existence of Periodic Points for Continuous Maps on Dendrites
    E. N. Makhrova
    [J]. Lobachevskii Journal of Mathematics, 2022, 43 : 1711 - 1719
  • [8] Remarks on the Existence of Periodic Points for Continuous Maps on Dendrites
    Makhrova, E. N.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (07) : 1711 - 1719
  • [9] Equicontinuity of Maps on a Dendrite with Finite Branch Points
    Tai Xiang SUN
    Guang Wang SU
    Hong Jian XI
    Xin KONG
    [J]. ActaMathematicaSinica., 2017, 33 (08) - 1130
  • [10] Equicontinuity of Maps on a Dendrite with Finite Branch Points
    Tai Xiang SUN
    Guang Wang SU
    Hong Jian XI
    Xin KONG
    [J]. Acta Mathematica Sinica,English Series, 2017, (08) : 1125 - 1130