Combinatorics of tropical Hurwitz cycles

被引:0
|
作者
Simon Hampe
机构
[1] Technische Universität Berlin,Institut für Mathematik
来源
关键词
Hurwitz theory; Tropical geometry; Computational geometry;
D O I
暂无
中图分类号
学科分类号
摘要
We study properties of the tropical double Hurwitz loci defined by Bertram, Cavalieri and Markwig. We show that all such loci are connected in codimension one. If we mark preimages of simple ramification points, then for a generic choice of such points, the resulting cycles are weakly irreducible, i.e. an integer multiple of an irreducible cycle. We study how Hurwitz cycles can be written as divisors of rational functions and show that they are numerically equivalent to a tropical version of a representation as a sum of boundary divisors. The results and counterexamples in this paper were obtained with the help of a-tint, an extension for polymake for tropical intersection theory.
引用
下载
收藏
页码:1027 / 1058
页数:31
相关论文
共 50 条
  • [1] Combinatorics of tropical Hurwitz cycles
    Hampe, Simon
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (04) : 1027 - 1058
  • [2] CLASSICAL HURWITZ NUMBERS AND RELATED COMBINATORICS
    Dubrovin, Boris
    Yang, Di
    Zagier, Don
    MOSCOW MATHEMATICAL JOURNAL, 2017, 17 (04) : 601 - 633
  • [3] Polynomiality, wall crossings and tropical geometry of rational double Hurwitz cycles
    Bertram, Aaron
    Cavalieri, Renzo
    Markwig, Hannah
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (07) : 1604 - 1631
  • [4] Hurwitz Numbers: On the Edge Between Combinatorics and Geometry
    Lando, Sergei K.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL IV: INVITED LECTURES, 2010, : 2444 - 2470
  • [5] Tropical Hurwitz numbers
    Cavalieri, Renzo
    Johnson, Paul
    Markwig, Hannah
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (02) : 241 - 265
  • [6] Tropical Hurwitz numbers
    Renzo Cavalieri
    Paul Johnson
    Hannah Markwig
    Journal of Algebraic Combinatorics, 2010, 32 : 241 - 265
  • [7] Introduction to tropical combinatorics
    Kirillov, AN
    PHYSICS AND COMBINATORICS, 2001, : 82 - 150
  • [8] Tropical real Hurwitz numbers
    Markwig, Hannah
    Rau, Johannes
    MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) : 501 - 522
  • [9] Tropical real Hurwitz numbers
    Hannah Markwig
    Johannes Rau
    Mathematische Zeitschrift, 2015, 281 : 501 - 522
  • [10] Tropical Open Hurwitz Numbers
    Bertrand, Benoit
    Brugalle, Erwan
    Mikhalkin, Grigory
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2011, 125 : 157 - 171