Higher-Dimensional Stick Percolation

被引:0
|
作者
Erik I. Broman
机构
[1] Chalmers University of Technology and Gothenburg University,
来源
关键词
Continuum-percolation; Stick percolation; Scaling exponent; Primary 60K35; Secondary 60D05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider two cases of the so-called stick percolation model with sticks of length L. In the first case, the orientation is chosen independently and uniformly, while in the second all sticks are oriented along the same direction. We study their respective critical values λc(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _c(L)$$\end{document} of the percolation phase transition, and in particular we investigate the asymptotic behavior of λc(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _c(L)$$\end{document} as L→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\rightarrow \infty $$\end{document} for both of these cases. In the first case we prove that λc(L)∼L-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _c(L)\sim L^{-2}$$\end{document} for any d≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2,$$\end{document} while in the second we prove that λc(L)∼L-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _c(L)\sim L^{-1}$$\end{document} for any d≥2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2.$$\end{document}
引用
收藏
相关论文
共 50 条
  • [1] Higher-Dimensional Stick Percolation
    Broman, Erik I.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2022, 186 (01)
  • [2] HIGHER-DIMENSIONAL TARGETING
    KOSTELICH, EJ
    GREBOGI, C
    OTT, E
    YORKE, JA
    [J]. PHYSICAL REVIEW E, 1993, 47 (01): : 305 - 310
  • [3] On higher-dimensional dynamics
    Wesson, PS
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) : 2423 - 2438
  • [4] HIGHER-DIMENSIONAL COSMOLOGIES
    LORENZPETZOLD, D
    [J]. PHYSICS LETTERS B, 1984, 148 (1-3) : 43 - 47
  • [5] HIGHER-DIMENSIONAL UNIFICATION
    FREUND, PGO
    [J]. PHYSICA D, 1985, 15 (1-2): : 263 - 269
  • [6] On the higher-dimensional wavelet frames
    Mu, LH
    Zhang, ZH
    Zhang, PX
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 16 (01) : 44 - 59
  • [7] Perturbations of higher-dimensional spacetimes
    Durkee, Mark
    Reall, Harvey S.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (03)
  • [8] ON HIGHER-DIMENSIONAL FIBERED KNOTS
    ANDREWS, JJ
    SUMNERS, DW
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 234 - &
  • [9] CLASSIFICATION OF HIGHER-DIMENSIONAL VARIETIES
    MORI, S
    [J]. PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1987, 46 : 269 - 331
  • [10] Higher-Dimensional Box Integrals
    Borwein, Jonathan M.
    Chan, O-Yeat
    Crandall, R. E.
    [J]. EXPERIMENTAL MATHEMATICS, 2010, 19 (04) : 431 - 446