The statistical power and Type I error rate of several homogeneity tests, usually applied in meta-analysis, are compared using Monte Carlo simulation: (1) The chi-square test applied to standardized mean differences, correlation coefficients, and Fisher's r-to-Z transformations, and (2) S&H-75 (and 90 percent) procedure applied to standardized mean differences and correlation coefficients. Chi-square tests adjusted correctly Type I error rates to the nominal significance level while the S&H procedures showed higher rates; consequently, the S&H procedures presented greater statistical power. In all conditions, the statistical power was very low, particularly when the sample had few studies, small sample sizes, and presented short differences between the parametric effect sizes. Finally, the criteria for selecting homogeneity tests are discussed.