On the Star-Critical Ramsey Number of a Forest Versus Complete Graphs

被引:0
|
作者
Azam Kamranian
Ghaffar Raeisi
机构
[1] Shahrekord University,Department of Mathematical Sciences
关键词
Ramsey number; Star-critical; Size Ramsey; Forest; Complete graphs; 05D10; 05C55; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Let G and G1,G2,…,Gt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1, G_2, \ldots , G_t$$\end{document} be given graphs. By G→(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\rightarrow (G_1, G_2, \ldots , G_t)$$\end{document}, we mean if the edges of G are arbitrarily colored by t colors, then for some i, 1≤i≤t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i\le t$$\end{document}, the spanning subgraph of G whose edges are colored with the i-th color, contains a copy of Gi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_i$$\end{document}. The Ramsey number R(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(G_1, G_2, \ldots , G_t)$$\end{document} is the smallest positive integer n such that Kn→(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n\rightarrow (G_1, G_2, \ldots , G_t)$$\end{document}, and the size Ramsey number R^(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{R}}(G_1, G_2, \ldots , G_t)$$\end{document} is defined as min{|E(G)|:G→(G1,G2,…,Gt)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{|E(G)|:~G\rightarrow (G_1, G_2, \ldots , G_t)\}$$\end{document}. Also, for given graphs G1,G2,…,Gt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1, G_2, \ldots , G_t$$\end{document} with r=R(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=R(G_1, G_2, \ldots , G_t)$$\end{document}, the star-critical Ramsey number R∗(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_*(G_1, G_2, \ldots , G_t)$$\end{document} is defined as min{δ(G):G⊆Kr,G→(G1,G2,…,Gt)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{\delta (G):~G\subseteq K_r, ~G\rightarrow (G_1, G_2, \ldots , G_t)\}$$\end{document}. In this paper, the Ramsey number and also the star-critical Ramsey number of a forest versus any number of complete graphs will be computed exactly in terms of the Ramsey number of the complete graphs. As a result, the computed star-critical Ramsey number is used to give a tight bound for the size Ramsey number of a forest versus a complete graph.
引用
收藏
页码:499 / 505
页数:6
相关论文
共 50 条
  • [1] On the Star-Critical Ramsey Number of a Forest Versus Complete Graphs
    Kamranian, Azam
    Raeisi, Ghaffar
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2022, 46 (02): : 499 - 505
  • [2] CRITICAL GRAPHS FOR R(Pn, Pm) AND THE STAR-CRITICAL RAMSEY NUMBER FOR PATHS
    Hook, Jonelle
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (04) : 689 - 701
  • [3] Star-Critical Gallai–Ramsey Numbers of Graphs
    Xueli Su
    Yan Liu
    Graphs and Combinatorics, 2022, 38
  • [4] STAR-CRITICAL CONNECTED RAMSEY NUMBERS FOR 2-COLORINGS OF COMPLETE GRAPHS
    Moun, Monu
    Jakhar, Jagjeet
    Budden, Mark
    TRANSACTIONS ON COMBINATORICS, 2025, 14 (04) : 211 - 222
  • [5] Star-critical Ramsey number of Fn versus K4
    Haghi, Sh.
    Maimani, H. R.
    Seify, A.
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 203 - 209
  • [6] Star-critical ramsey number of fan-graph versus matching
    Li, Zhen
    Li, Yusheng
    Tongji Daxue Xuebao/Journal of Tongji University, 2014, 42 (12): : 1928 - 1930
  • [7] Star-Critical Gallai-Ramsey Numbers of Graphs
    Su, Xueli
    Liu, Yan
    GRAPHS AND COMBINATORICS, 2022, 38 (05)
  • [8] Multicolor star-critical Ramsey numbers and Ramsey-good graphs
    Budden, Mark Rowland
    DeJonge, Elijah
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (01) : 51 - 66
  • [9] On Ramsey and star-critical Ramsey numbers for generalized fans versus nKm
    Hamm, Arran
    Hazelton, Paul
    Thompson, Suzanna
    DISCRETE APPLIED MATHEMATICS, 2021, 305 : 64 - 70
  • [10] Star-Critical Ramsey Numbers of Cycles Versus Wheels
    Yuchen Liu
    Yaojun Chen
    Graphs and Combinatorics, 2021, 37 : 2167 - 2172