Obligatory subsystems of triple systems

被引:0
|
作者
A. Hajnal
P. Komjáth
机构
[1] Alfréd Rényi Institute of Mathematics,Department of Computer Science
[2] Eötvös University,undefined
来源
Acta Mathematica Hungarica | 2008年 / 119卷
关键词
chromatic number; uncountable hypergraphs; 03E05; 03E35; 05C15; 05C65;
D O I
暂无
中图分类号
学科分类号
摘要
We determine a class of triple systems such that each must occur in a triple system with uncountable chromatic number that omits \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T}_0 $$\end{document} (the unique system consisting of two triples on four vertices). This class contains all odd circuits of length ≧ 7. We also show that consistently there are two finite triple systems such that they can separately be omitted by uncountably chromatic triple systems but not both.
引用
收藏
页码:1 / 13
页数:12
相关论文
共 50 条
  • [1] Obligatory subsystems of triple systems
    Hajnal, A.
    Komjath, P.
    ACTA MATHEMATICA HUNGARICA, 2008, 119 (1-2) : 1 - 13
  • [2] Some remarks on obligatory subsystems of uncountably chromatic triple systems
    Komjáth, P
    COMBINATORICA, 2001, 21 (02) : 233 - 238
  • [3] TRIPLE SYSTEMS WITH PRESCRIBED SUBSYSTEMS
    ROBINSON, RM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (04): : 937 - &
  • [4] Kirkman triple systems with subsystems
    Kokkala, Janne, I
    Ostergard, Patric R. J.
    DISCRETE MATHEMATICS, 2020, 343 (09)
  • [5] ENUMERATION OF STEINER TRIPLE SYSTEMS WITH SUBSYSTEMS
    Kaski, Petteri
    Ostergard, Patric R. J.
    Popa, Alexandru
    MATHEMATICS OF COMPUTATION, 2015, 84 (296) : 3051 - 3067
  • [6] STEINER TRIPLE SYSTEMS OF ORDER 21 WITH SUBSYSTEMS
    Heinlein, Daniel
    Ostergard, Patric R. J.
    GLASNIK MATEMATICKI, 2023, 58 (02) : 233 - 245
  • [7] Steiner triple systems with disjoint or intersecting subsystems
    Colbourn, CJ
    Oravas, MA
    Rees, RS
    JOURNAL OF COMBINATORIAL DESIGNS, 2000, 8 (01) : 58 - 77
  • [8] On the existence of nearly Kirkman triple systems with subsystems
    Dameng Deng
    Rolf Rees
    Hao Shen
    Designs, Codes and Cryptography, 2008, 48 : 17 - 33
  • [9] Steiner triple systems with two disjoint subsystems
    Bryant, D
    Horsley, D
    JOURNAL OF COMBINATORIAL DESIGNS, 2006, 14 (01) : 14 - 24
  • [10] On the existence of nearly Kirkman triple systems with subsystems
    Deng, Dameng
    Rees, Rolf
    Shen, Hao
    DESIGNS CODES AND CRYPTOGRAPHY, 2008, 48 (01) : 17 - 33