We determine a class of triple systems such that each must occur in a triple system with uncountable chromatic number that omits \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\mathcal{T}_0
$$\end{document} (the unique system consisting of two triples on four vertices). This class contains all odd circuits of length ≧ 7. We also show that consistently there are two finite triple systems such that they can separately be omitted by uncountably chromatic triple systems but not both.