A Lyapunov-type inequality for a fractional boundary value problem

被引:2
|
作者
Rui A. C. Ferreira
机构
[1] Lusophone University of Humanities and Technologies,Department of Mathematics
[2] Center for Research and Development in Mathematics and Applications,undefined
关键词
Lyapunov’s inequality; fractional derivative, Green’s function; Mittag-Leffler function; Primary: 34A08, 34A40; Secondary: 26D10, 34C10, 33E12;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we obtain a Lyapunov-type inequality for a fractional differential equation subject to Dirichlet-type boundary conditions. Moreover, we apply this inequality to deduce a criteria for the nonexistence of real zeros of a certain Mittag-Leffler function.
引用
收藏
页码:978 / 984
页数:6
相关论文
共 50 条
  • [1] A Lyapunov-type inequality for a fractional boundary value problem
    Ferreira, Rui A. C.
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (04) : 978 - 984
  • [2] A NEW FRACTIONAL BOUNDARY VALUE PROBLEM AND LYAPUNOV-TYPE INEQUALITY
    Pourhadi, Ehsan
    Mursaleen, Mohammad
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (01): : 81 - 93
  • [3] Lyapunov-type inequality for a fractional boundary value problem with natural conditions
    Guezane-Lakoud A.
    Khaldi R.
    Torres D.F.M.
    [J]. SeMA Journal, 2018, 75 (1) : 157 - 162
  • [4] A New Proof for Lyapunov-Type Inequality on the Fractional Boundary Value Problem
    Zou, Yumei
    Zhang, Xin
    Li, Hongyu
    [J]. SYMMETRY-BASEL, 2021, 13 (01): : 1 - 9
  • [5] A LYAPUNOV-TYPE INEQUALITY FOR A PERIODIC BOUNDARY VALUE PROBLEM OF A FRACTIONAL DIFFERENTIAL EQUATION
    Xing Zhu
    Yuqiang Feng
    Yuanyuan Wang
    [J]. Annals of Applied Mathematics, 2017, 33 (02) : 212 - 220
  • [6] A Lyapunov-type inequality for a fractional q-difference boundary value problem
    Jleli, Mohamed
    Samet, Bessem
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 1965 - 1976
  • [7] Lyapunov-Type Inequality for An Anti-Periodic Fractional Boundary Value Problem
    Rui A. C. Ferreira
    [J]. Fractional Calculus and Applied Analysis, 2017, 20 : 284 - 291
  • [8] LYAPUNOV-TYPE INEQUALITY FOR AN ANTI-PERIODIC FRACTIONAL BOUNDARY VALUE PROBLEM
    Ferreira, Rui A. C.
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (01) : 284 - 291
  • [9] LYAPUNOV-TYPE INEQUALITY FOR THE HADAMARD FRACTIONAL BOUNDARY VALUE PROBLEM ON A GENERAL INTERVAL [a, b]
    Laadjal, Zaid
    Adjeroud, Nacer
    Ma, Qinghua
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (03): : 789 - 799
  • [10] A LYAPUNOV-TYPE INEQUALITY FOR A FRACTIONAL BOUNDARY VALUE PROBLEM WITH CAPUTO-FABRIZIO DERIVATIVE
    Kirane, Mokhtar
    Torebek, Berikbol T.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04): : 1005 - 1012