A Highly Accurate Difference Method for Approximating the Solution and Its First Derivatives of the Dirichlet Problem for Laplace’s Equation on a Rectangle

被引:0
|
作者
Adiguzel A. Dosiyev
Hediye Sarikaya
机构
[1] NAS of Azerbaijan,Institute of Mathematics and Mechanics
[2] Near East University,Department of Mathematics
来源
关键词
Finite difference method; error estimations; approximation of the derivatives; numerical solution to the Laplace equation; highly accurate methods; 65M06; 65M12; 65M22;
D O I
暂无
中图分类号
学科分类号
摘要
A pointwise error estimation of the form O(ρh8),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\rho h^{8}),$$\end{document}h is the mesh size, for the approximate solution of the Dirichlet problem for Laplace’s equation on a rectangular domain is obtained as a result of three-stage (9-point, 5-point and 5-point) finite difference method; here ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}=ρ(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=\rho (x,y)$$\end{document} is the distance from the current grid point (x,y)∈Πh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x,y)\in \Pi ^{h}$$\end{document} to the boundary of the rectangle Π.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi .$$\end{document} Using this error estimation, it is proved that the proposed three-stage method constructed to find an approximate value of the first derivatives of the solution converges uniformly with an order of O(h8)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^{8})$$\end{document}. The illustrated results of the numerical experiment support the analysis made.
引用
收藏
相关论文
共 50 条