Do Neutron Star Gravitational Waves Carry Superfluid Imprints?

被引:0
|
作者
G. L. Comer
机构
[1] Saint Louis University,Department of Physics
来源
Foundations of Physics | 2002年 / 32卷
关键词
neutron stars; superfluidity; gravitational waves;
D O I
暂无
中图分类号
学科分类号
摘要
Isolated neutron stars undergoing non-radial oscillations are expected to emit gravitational waves in the kilohertz frequency range. To date, radio astronomers have located about 1,300 pulsars, and can estimate that there are about 2×108 neutron stars in the galaxy. Many of these are surely old and cold enough that their interiors will contain matter in the superfluid or superconducting state. In fact, the so-called glitch phenomenon in pulsars (a sudden spin-up of the pulsar's crust) is best described by assuming the presence of superfluid neutrons and superconducting protons in the inner crusts and cores of the pulsars. Recently there has been much progress on modelling the dynamics of superfluid neutron stars in both the Newtonian and general relativistic regimes. We will discuss some of the main results of this recent work, perhaps the most important being that superfluidity should affect the gravitational waves from neutron stars (emitted, for instance, during a glitch) by modifying both the rotational properties of the background star and the modes of oscillation of the perturbed configuration. Finally, we present an analysis of the so-called zero-frequency subspace (i.e., the space of time-independent perturbations) and determine that it is spanned by two sets of polar (or spheroidal) and two sets of axial (or toroidal) degenerate perturbations for the general relativistic system. As in the Newtonian case, the polar perturbations are the g-modes which are missing from the pulsation spectrum of a non-rotating configuration, and the axial perturbations should lead to two sets of r-modes when the degeneracy of the frequencies is broken by having the background rotate.
引用
收藏
页码:1903 / 1942
页数:39
相关论文
共 50 条
  • [1] Do neutron star gravitational waves carry superfluid imprints?
    Comer, GL
    FOUNDATIONS OF PHYSICS, 2002, 32 (12) : 1903 - 1942
  • [2] Gravitational radiation of a differentially rotating superfluid neutron star
    Hayrapetyan, M. V.
    ASTROPHYSICS, 2008, 51 (04) : 559 - 564
  • [3] Gravitational radiation of a differentially rotating superfluid neutron star
    M. V. Hayrapetyan
    Astrophysics, 2008, 51 : 559 - 564
  • [4] Neutron Star Dynamics and Gravitational Waves
    Kokkotas, Kostas D.
    Gaertig, Erich
    Colaiuda, Antonella
    FIRST MEDITERRANEAN CONFERENCE ON CLASSICAL AND QUANTUM GRAVITY (MCCQG 2009), 2010, 222
  • [5] Neutron star as a mirror for gravitational waves
    Wei, Hao
    Qiang, Da-Chun
    Yu, Zhong-Xi
    Deng, Hua-Kai
    ASTROPHYSICS AND SPACE SCIENCE, 2020, 365 (09)
  • [6] Neutron Star Dynamics and Gravitational Waves
    Kokkotas, Kostas D.
    Colaiuda, Antonella
    Gaertig, Erich
    ADVANCES IN HELLENIC ASTRONOMY DURING THE IYA09, 2010, 424 : 384 - 393
  • [7] Neutron star as a mirror for gravitational waves
    Hao Wei
    Da-Chun Qiang
    Zhong-Xi Yu
    Hua-Kai Deng
    Astrophysics and Space Science, 2020, 365
  • [8] Neutron star collisions and gravitational waves
    Hanauske, Matthias
    Weih, Lukas R.
    ASTRONOMISCHE NACHRICHTEN, 2021, 342 (05) : 788 - 798
  • [9] Gravitational waves from neutron star binaries
    Lee, Chang-Hwan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2017, 26 (1-2):
  • [10] Density discontinuity of a neutron star and gravitational waves
    Sotani, H
    Tominaga, K
    Maeda, K
    PHYSICAL REVIEW D, 2002, 65 (02):