Berezin Transform for Solvable Groups

被引:0
|
作者
Jonathan Arazy
Harald Upmeier
机构
[1] University of Haifa,Department of Mathematics
[2] Universität Marburg,Fachbereich Mathematik
来源
关键词
Berezin transform; solvable groups; homogeneous Siegel domains; symmetric cones; Euclidean Jordan algebras; reproducing kernels; correspondence principle; summability kernels; hypergeometric functions;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Berezin transform in the context of solvable groups AN (acting on homogeneous cones and Siegel domains) and determine its spectral decomposition, using an explicit integral kernel representation for the associated ‘eigen-operators’ in terms of multivariable hypergeometric functions.
引用
收藏
页码:5 / 28
页数:23
相关论文
共 50 条
  • [1] Berezin transform for solvable groups
    Arazy, J
    Upmeier, H
    ACTA APPLICANDAE MATHEMATICAE, 2004, 81 (1-3) : 5 - 28
  • [2] Berezin Transform
    Guo, Kunyu
    Huang, Hansong
    MULTIPLICATION OPERATORS ON THE BERGMAN SPACE, 2015, 2145 : 301 - 303
  • [3] Berezin-Toeplitz quantization and Berezin transform
    Schlichenmaier, M
    LONG TIME BEHAVIOUR OF CLASSICAL AND QUANTUM SYSTEMS, 2001, 1 : 271 - 287
  • [4] Derivatives of the Berezin Transform
    Bommier-Hato, Helene
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [5] On the range of the Berezin transform
    Ahern, P
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 215 (01) : 206 - 216
  • [6] On the derivatives of the Berezin transform
    Englis, M
    Zhang, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (08) : 2285 - 2294
  • [7] Domination of Berezin transform
    Das N.
    Sahoo M.
    Vietnam Journal of Mathematics, 2015, 43 (3) : 609 - 620
  • [8] The Range of the Berezin Transform
    Rao N.V.
    Journal of Mathematical Sciences, 2018, 228 (6) : 684 - 694
  • [9] Berezin Transform, Mellin Transform and Toeplitz Operators
    Cuckovic, Zeljko
    Li, Bo
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (01) : 189 - 218
  • [10] The Berezin Transform and Its Applications
    Kehe Zhu
    Acta Mathematica Scientia, 2021, 41 : 1839 - 1858