Sparse tensor product spectral Galerkin BEM for elliptic problems with random input data on a spheroid

被引:0
|
作者
Alexey Chernov
Duong Pham
机构
[1] University of Bonn,Hausdorff Center for Mathematics and Institute for Numerical Simulation
[2] University of Reading,Department of Mathematics and Statistics
来源
关键词
Sparse spectral discretization; Dirichlet-to-Neumann operator; Random data; Tensor product; Spherical harmonics; Spheroidal coordinates; 65N30; 35R60; 41A25;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and analyze a sparse tensor product spectral Galerkin Boundary Element Method based on spherical harmonics for elliptic problems with random input data on a spheroid. Problems of this type appear in geophysical applications, in particular in data acquisition by satellites. Aiming at a deterministic computation of the k-th order statistical moments of the random solution, we establish convergence theorems showing that the sparse tensor product spectral Galerkin discretization is superior to the full tensor product spectral Galerkin discretization in the case of mixed regularity of the data’s k-th order moments, naturally implying mixed regularity of the k-th order moments of the random solution. We prove that analytic regularity of the data’s k-th order moments implies analytic regularity of the solution’s k-th order moments. We illustrate performance of the sparse and full tensor product discretization schemes on several numerical examples.
引用
收藏
页码:77 / 104
页数:27
相关论文
共 50 条
  • [1] Sparse tensor product spectral Galerkin BEM for elliptic problems with random input data on a spheroid
    Chernov, Alexey
    Duong Pham
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (01) : 77 - 104
  • [2] Adjusted Sparse Tensor Product Spectral Galerkin Method for Solving Pseudodifferential Equations on the Sphere with Random Input Data
    Duong Thanh Pham
    Dinh Dung
    ACTA APPLICANDAE MATHEMATICAE, 2020, 166 (01) : 187 - 214
  • [3] Adjusted Sparse Tensor Product Spectral Galerkin Method for Solving Pseudodifferential Equations on the Sphere with Random Input Data
    Duong Thanh Pham
    Dinh Dũng
    Acta Applicandae Mathematicae, 2020, 166 : 187 - 214
  • [4] Stochastic Galerkin methods for elliptic interface problems with random input
    Zhou, Tao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (05) : 782 - 792
  • [5] On the Algebraic Construction of Sparse Multilevel Approximations of Elliptic Tensor Product Problems
    Helmut Harbrecht
    Peter Zaspel
    Journal of Scientific Computing, 2019, 78 : 1272 - 1290
  • [6] On the Algebraic Construction of Sparse Multilevel Approximations of Elliptic Tensor Product Problems
    Harbrecht, Helmut
    Zaspel, Peter
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) : 1272 - 1290
  • [7] A Sparse Grid Stochastic Collocation Method for Elliptic Interface Problems with Random Input
    Qian Zhang
    Zhilin Li
    Zhiyue Zhang
    Journal of Scientific Computing, 2016, 67 : 262 - 280
  • [8] A Sparse Grid Stochastic Collocation Method for Elliptic Interface Problems with Random Input
    Zhang, Qian
    Li, Zhilin
    Zhang, Zhiyue
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 67 (01) : 262 - 280
  • [9] Jacobi spectral Galerkin method for elliptic Neumann problems
    Doha, E. H.
    Bhrawy, A. H.
    Abd-Elhameed, W. M.
    NUMERICAL ALGORITHMS, 2009, 50 (01) : 67 - 91
  • [10] Jacobi spectral Galerkin method for elliptic Neumann problems
    E. H. Doha
    A. H. Bhrawy
    W. M. Abd-Elhameed
    Numerical Algorithms, 2009, 50