Computational assessment of cracks under strain-gradient plasticity

被引:0
|
作者
Xiaofei Pan
Huang Yuan
机构
[1] University of Wuppertal,Department of Mechanical Engineering
来源
关键词
Crack tip field; Small scale yielding; Finite scale yielding; Intrinsic material length; Element-free Galerkin method; 74A45;
D O I
暂无
中图分类号
学科分类号
摘要
With introducing the strain gradient into plasticity theory, the crack field singularity at the crack tip changes. Characterization of the crack in strain-gradient dependent materials has not found a common consensus. In the present work the crack tip field is systematically investigated within the frame of the strain-gradient plasticity using the element-free Galerkin method. Under both small scale yielding and finite yielding conditions the crack field in strain-gradient plasticity consists of three zones: The elastic K-field, the known plastic HRR-field dominated by the known energy release rate, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal G}$$\end{document}, and the hyper-singular stress field which cannot be characterized by the known fracture mechanics parameters. Effects of the finite strains have been considered for both small scale yielding and finite cracked specimens. The computational results show that the finite strains do not change the characterization of the crack tip fields under the strain-gradient plasticity. In all investigated cases the hyper-singular zone is small (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${r < \mathcal G/\sigma_0}$$\end{document}) and well contained by the HRR zone under the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal G}$$\end{document} dominance condition. The hyper-singular zone is in the size of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${r/(\mathcal G/\sigma_0)}$$\end{document} and may grow with the material length, but decrease with applied load. The known elastic-plastic fracture mechanics parameter, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal G}$$\end{document}, can be directly applied to characterize the crack under strain-gradient plasticity, within the intrinsic material length much smaller than the overall component size, l < 0.1%L0. In this case the strain-gradient term in the gradient plasticity will not affect description of cracks.
引用
收藏
页码:235 / 248
页数:13
相关论文
共 50 条
  • [1] Computational assessment of cracks under strain-gradient plasticity
    Pan, Xiaofei
    Yuan, Huang
    [J]. INTERNATIONAL JOURNAL OF FRACTURE, 2011, 167 (02) : 235 - 248
  • [2] Fractional strain-gradient plasticity
    Dahlberg, C. F. O.
    Ortiz, M.
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2019, 75 : 348 - 354
  • [3] Strain-gradient plasticity at the micron scale
    Huang, Y
    Gao, H
    Hwang, KC
    [J]. PROGRESS IN MECHANICAL BEHAVIOUR OF MATERIALS (ICM8), VOL 3: ADVANCE MATERIALS AND MODELLING OF MECHANICAL BEHAVIOUR, 1999, : 1051 - 1056
  • [4] Strain-gradient plasticity theory in large strain
    Matsushima, T
    Chambon, R
    Caillerie, D
    [J]. BIFURCATION AND LOCALISATION THEORY IN GEOMECHANICS, 2001, : 217 - 224
  • [5] Size Scaling of Plastic Deformation in Simple Shear: Fractional Strain-Gradient Plasticity and Boundary Effects in Conventional Strain-Gradient Plasticity
    Dahlberg, Carl F. O.
    Ortiz, Michael
    [J]. Journal of Applied Mechanics, Transactions ASME, 2020, 87 (03):
  • [6] Size Scaling of Plastic Deformation in Simple Shear: Fractional Strain-Gradient Plasticity and Boundary Effects in Conventional Strain-Gradient Plasticity
    Dahlberg, Carl F. O.
    Ortiz, Michael
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2020, 87 (03):
  • [7] Validation of a phenomenological strain-gradient plasticity theory
    Dunstan, D. J.
    [J]. PHILOSOPHICAL MAGAZINE LETTERS, 2016, 96 (08) : 305 - 312
  • [8] A theory for grain boundaries with strain-gradient plasticity
    Voyiadjis, George Z.
    Faghihi, Danial
    Zhang, Yida
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2014, 51 (10) : 1872 - 1889
  • [9] A Dissipative System Arising in Strain-gradient Plasticity
    Giacomelli, Lorenzo
    Tomassetti, Giuseppe
    [J]. APPLIED AND INDUSTRIAL MATHEMATICS IN ITALY III, 2009, 82 : 377 - 388
  • [10] TORSION IN STRAIN-GRADIENT PLASTICITY: ENERGETIC SCALE EFFECTS
    Chiricotto, Maria
    Giacomelli, Lorenzo
    Tomassetti, Giuseppe
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2012, 72 (04) : 1169 - 1191