The polynomial degree of the Grassmannian G(1,n,q) of lines in finite projective space PG(n, q)

被引:0
|
作者
David G. Glynn
Johannes G. Maks
Rey Casse
机构
[1] University of Adelaide,School of Mathematical Sciences
[2] Delft University of Technology,Department of Mathematics
来源
关键词
Polynomial degree; Grassmannian G(1,; ); Geometric codes; Quantum codes; 14M15; 51E22; 94B27;
D O I
暂无
中图分类号
学科分类号
摘要
Let G: = G(1,n,q) denote the Grassmannian of lines in PG(n,q), embedded as a point-set in PG(N, q) with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N:=\binom{n+1}{2}-1.$$\end{document} For n = 2 or 3 the characteristic function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (\overline{G})$$\end{document} of the complement of G is contained in the linear code generated by characteristic functions of complements of n-flats in PG(N, q). In this paper we prove this to be true for all cases (n, q) with q = 2 and we conjecture this to be true for all remaining cases (n, q). We show that the exact polynomial degree of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \chi (\overline{G})$$\end{document} is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q-1)(\binom{n}{2}-1+\delta )$$\end{document} for δ: = δ(n, q) = 0 or 1, and that the possibility δ = 1 is ruled out if the above conjecture is true. The result deg(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (\overline{G}))= \binom{n}{2}-1$$\end{document} for the binary cases (n,2) can be used to construct quantum codes by intersecting G with subspaces of dimension at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\binom{n}{2}.$$\end{document}
引用
收藏
页码:335 / 341
页数:6
相关论文
共 50 条