Regulatory response and interaction of Bradyrhizobium and arbuscular mycorrhizal fungi (AMF) play a vital role in rhizospheric soil processes and productivity of soybean (Glycine max L.). Nitrogen (N) and phosphorus (P) are essential nutrients for plant growth and productivity, the synergistic interaction(s) of AMF and Bradyrhizobium along with rhizospheric beneficial microorganisms stimulate soybean growth and development through enhanced mineral nutrient acquisition (N and P) and improved rhizosphere environment. Such interactions are crucial, especially under low-input eco-friendly agricultural cropping systems, which rely on biological processes rather than agrochemicals to maintain soil quality, sustainability, and productivity. Furthermore, enhancement of N-fixation by root nodules along with AMF-mediated synergism improves plant P nutrition and uptake, and proliferation of phosphate-solubilizing fungi. However, the genetic and/or allelic diversity among native strains, their genes/enzymes and many environmental factors (e.g., soil organic matter, fertilizers, light, temperature, soil moisture, and biotic interactors) affect the interactions between AMF and Bradyrhizobium. New information is available regarding the genetic composition of elite soybean inoculant strains in maximizing symbiotic performance, N-fixing capabilities and depending on N and P status the host-mediated regulation of root architecture. Overall, for sustainable soybean production systems, a deeper understanding of the interaction effects of Bradyrhizobium and AMF co-inoculation are expected in the future, so that optimized combinations of microorganisms can be applied as effective soil inoculants for plant growth promotion and fitness. The objective of this review is to offer insights into the mechanistic interactions of AMF and Bradyrhizobium and rhizopheric soil health, and elucidate the role of environmental factors in regulating growth, development and sustainable soybean productivity.