Belov, Logachev and Sandimirov construct linear codes of minimum distance d for roughly 1/qk/2 of the values of d < qk-1. In this article we shall prove that, for q = p prime and roughly \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\frac{3}{8}}$$\end{document}-th’s of the values of d < qk-1, there is no linear code meeting the Griesmer bound. This result uses Blokhuis’ theorem on the size of a t-fold blocking set in PG(2, p), p prime, which we generalise to higher dimensions. We also give more general lower bounds on the size of a t-fold blocking set in PG(δ, q), for arbitrary q and δ ≥ 3. It is known that from a linear code of dimension k with minimum distance d < qk-1 that meets the Griesmer bound one can construct a t-fold blocking set of PG(k−1, q). Here, we calculate explicit formulas relating t and d. Finally we show, using the generalised version of Blokhuis’ theorem, that nearly all linear codes over \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb F}_p}$$\end{document} of dimension k with minimum distance d < qk-1, which meet the Griesmer bound, have codewords of weight at least d + p in subcodes, which contain codewords satisfying certain hypotheses on their supports.