The sum of coefficients of bounded univalent functions

被引:0
|
作者
D. V. Prokhorov
机构
[1] N. G. Chernyshevskii Saratov State University,
来源
Mathematical Notes | 1997年 / 61卷
关键词
holomorphic functions; Pick functions; Koebe functions; maximal value problem;
D O I
暂无
中图分类号
学科分类号
摘要
We solve the maximal value problem for the functional\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\operatorname{Re} \sum\nolimits_{j = 1}^m {a_{k_j } } $$ \end{document} in the class of functionsf(z)=z+a2z2+… that are holomorphic and univalent in the unit disk and satisfy the inequality |f(z)|<M. We prove that the Pick functions are extremal for this problem for sufficiently largeM whenever the set of indicesk1,…,km contains an even number.
引用
收藏
页码:609 / 613
页数:4
相关论文
共 50 条