-Laplacian;
nonsmooth critical point theory;
Clarke subdifferential;
saddle point theorem;
periodic solution;
Poincare-Wirtinger inequality;
Sobolev inequality;
nonsmooth Palais-Smale condition;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper we examine nonlinear periodic systems driven by the vectorial p-Laplacian and with a nondifferentiable, locally Lipschitz nonlinearity. Our approach is based on the nonsmooth critical point theory and uses the subdifferential theory for locally Lipschitz functions. We prove existence and multiplicity results for the “sublinear” problem. For the semilinear problem (i.e. p = 2) using a nonsmooth multidimensional version of the Ambrosetti-Rabinowitz condition, we prove an existence theorem for the “superlinear” problem. Our work generalizes some recent results of Tang (PAMS 126(1998)).
机构:
Univ Reggio Calabria, Dipartimento Patrimonio Architetton & Urbanist, I-89124 Reggio Di Calabria, ItalyUniv Reggio Calabria, Dipartimento Patrimonio Architetton & Urbanist, I-89124 Reggio Di Calabria, Italy
Barletta, Giuseppina
Papageorgiou, Nikolaos S.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Tech Univ Athens, Dept Math, Athens 15780, GreeceUniv Reggio Calabria, Dipartimento Patrimonio Architetton & Urbanist, I-89124 Reggio Di Calabria, Italy