Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions

被引:0
|
作者
Pengyu Chen
Yongxiang Li
机构
[1] Northwest Normal University,Department of Mathematics
关键词
34K30; 35K90; 35R11; 47H07; 47H08; Nonlocal condition; Fractional evolution equation; Coupled lower and upper mild ; -quasi-solutions; -semigroup; Measure of noncompactness; Monotone iterative method;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with nonlocal problem for fractional evolution equations with mixed monotone nonlocal term of the form CDtqu(t)+Au(t)=f(t,u(t),u(t)),t∈J=[0,a],u(0)=g(u,u),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{ll}^CD^{q}_tu(t) + Au(t) = f(t, u(t), u(t)),\quad t \in J = [0, a],\\u(0) = g(u, u),\end{array}\right.$$\end{document}where E is an infinite-dimensional Banach space, CDtq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${^CD^{q}_t}$$\end{document} is the Caputo fractional derivative of order q∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q\in (0, 1)}$$\end{document} , A : D(A) ⊂ E → E is a closed linear operator and −A generates a uniformly bounded C0-semigroup T(t) (t ≥  0) in E, f∈C(J×E×E,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f \in C(J\times E \times E, E)}$$\end{document} , and g is appropriate continuous function so that it constitutes a nonlocal condition. Under a new concept of coupled lower and upper mild L-quasi-solutions, we construct a new monotone iterative method for nonlocal problem of fractional evolution equations with mixed monotone nonlocal term and obtain the existence of coupled extremal mild L-quasi-solutions and the mild solution between them. The results obtained generalize the recent conclusions on this topic. Finally, we present two applications to illustrate the feasibility of our abstract results.
引用
收藏
页码:711 / 728
页数:17
相关论文
共 50 条