In this paper, we are concerned with nonlocal problem for fractional evolution equations with mixed monotone nonlocal term of the form
CDtqu(t)+Au(t)=f(t,u(t),u(t)),t∈J=[0,a],u(0)=g(u,u),\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{\begin{array}{ll}^CD^{q}_tu(t) + Au(t) = f(t, u(t), u(t)),\quad t \in J = [0, a],\\u(0) = g(u, u),\end{array}\right.$$\end{document}where E is an infinite-dimensional Banach space, CDtq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${^CD^{q}_t}$$\end{document} is the Caputo fractional derivative of order q∈(0,1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${q\in (0, 1)}$$\end{document} , A : D(A) ⊂ E → E is a closed linear operator and −A generates a uniformly bounded C0-semigroup T(t) (t ≥ 0) in E, f∈C(J×E×E,E)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${f \in C(J\times E \times E, E)}$$\end{document} , and g is appropriate continuous function so that it constitutes a nonlocal condition. Under a new concept of coupled lower and upper mild L-quasi-solutions, we construct a new monotone iterative method for nonlocal problem of fractional evolution equations with mixed monotone nonlocal term and obtain the existence of coupled extremal mild L-quasi-solutions and the mild solution between them. The results obtained generalize the recent conclusions on this topic. Finally, we present two applications to illustrate the feasibility of our abstract results.