Strongly 1-Bounded Von Neumann Algebras

被引:0
|
作者
Kenley Jung
机构
[1] University of California,Department of Mathematics
来源
关键词
Geometric measure theory; free probability; free entropy; Primary 46L54; Secondary 28A75;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose F is a finite tuple of selfadjoint elements in a tracial von Neumann algebra M. For α > 0, F is α-bounded if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbb{P}}^\alpha (F) < \infty$$ \end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbb{P}}^\alpha$$ \end{document} is the free packing α-entropy of F introduced in [J3]. M is said to be strongly 1-bounded if M has a 1-bounded finite tuple of selfadjoint generators F such that there exists an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x \in F$$ \end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\chi (x) > -\infty$$ \end{document}. It is shown that if M is strongly 1-bounded, then any finite tuple of selfadjoint generators G for M is 1-bounded and δ0(G) ≤ 1; consequently, a strongly 1-bounded von Neumann algebra is not isomorphic to an interpolated free group factor and δ0 is an invariant for these algebras. Examples of strongly 1-bounded von Neumann algebras include (separable) II1-factors which have property Γ, have Cartan subalgebras, are non-prime, or the group von Neumann algebras of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$SL_n({\mathbb{Z}}), n \geq 3$$ \end{document}. If M and N are strongly 1-bounded and M ∩ N is diffuse, then the von Neumann algebra generated by M and N is strongly 1-bounded. In particular, a free product of two strongly 1-bounded von Neumann algebras with amalgamation over a common, diffuse von Neumann subalgebra is strongly 1-bounded. It is also shown that a II1-factor generated by the normalizer of a strongly 1-bounded von Neumann subalgebra is strongly 1-bounded.
引用
收藏
页码:1180 / 1200
页数:20
相关论文
共 50 条