An ensemble multi-scale residual attention network (EMRA-net) for image Dehazing

被引:0
|
作者
Jixiao Wang
Chaofeng Li
Shoukun Xu
机构
[1] Shanghai Maritime University,Institute of Logistics Science and Engineering
[2] Changzhou University,School of Information Science and Engineering
来源
关键词
Image dehazing; Convolutional neural network; Residual learning; Channel attention;
D O I
暂无
中图分类号
学科分类号
摘要
Image dehazing aims to recover a clean image from a hazy image, which is a challengingly longstanding problem. In this paper, we propose an Ensemble Multi-scale Residual Attention Network (EMRA-Net) to directly generate a clean image, which include two parts: a three-scale residual attention CNN (TRA-CNN), and an ensemble attention CNN (EA-CNN). In TRA-CNN, we employ wavelet transform to obtain the downsampled images, instead of using common spatial downsampling methods, such as nearest downsampling and strided-convolution. With the help of wavelet transform, we can avoid the loss of image texture details. Moreover, in each scale-branch, Res2Net modules are connected in series to make full use of the hierarchical features from the original hazy images, and channel attention mechanism is introduced to focus channel-dimension information. Finally, an EA-CNN is proposed to fuse coarse images generated from TRA-CNN into a refined clean image. Extensive experiments on the benchmark synthetic hazy datasets and the real-world hazy dataset prove that proposed EMRA-Net is superior to previous state-of-the-art methods both in subjective visual perception and objective image quality assessment metrics.
引用
收藏
页码:29299 / 29319
页数:20
相关论文
共 50 条
  • [1] An ensemble multi-scale residual attention network (EMRA-net) for image Dehazing
    Wang, Jixiao
    Li, Chaofeng
    Xu, Shoukun
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (19) : 29299 - 29319
  • [2] Multi-scale residual attention network for single image dehazing
    Sheng, Jiechao
    Lv, Guoqiang
    Du, Gang
    Wang, Zi
    Feng, Qibin
    [J]. DIGITAL SIGNAL PROCESSING, 2022, 121
  • [3] Multi-Scale Feature Fusion Network with Attention for Single Image Dehazing
    Hu, Bin
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS, 2021, 31 (04) : 608 - 615
  • [4] GridDehazeNet: Attention-Based Multi-Scale Network for Image Dehazing
    Liu, Xiaohong
    Ma, Yongrui
    Shi, Zhihao
    Chen, Jun
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7313 - 7322
  • [5] Multi-Scale Feature Fusion Network with Attention for Single Image Dehazing
    [J]. Pattern Recognition and Image Analysis, 2021, 31 : 608 - 615
  • [6] Multi-Scale Attention Feature Enhancement Network for Single Image Dehazing
    Dong, Weida
    Wang, Chunyan
    Sun, Hao
    Teng, Yunjie
    Xu, Xiping
    [J]. SENSORS, 2023, 23 (19)
  • [7] Multi-scale feature fusion pyramid attention network for single image dehazing
    Liu, Jianlei
    Liu, Peng
    Zhang, Yuanke
    [J]. IET IMAGE PROCESSING, 2023, 17 (09) : 2726 - 2735
  • [8] MARes-Net: multi-scale attention residual network for jaw cyst image segmentation
    Ding, Xiaokang
    Jiang, Xiaoliang
    Zheng, Huixia
    Shi, Hualuo
    Wang, Ban
    Chan, Sixian
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [9] Multi-scale recurrent attention gated fusion network for single image dehazing
    Zhang, Xiangfen
    Yang, Shuo
    Zhang, Qingyi
    Yuan, Feiniu
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 101
  • [10] Underwater Image Enhancement with Multi-Scale Residual Attention Network
    Ueki, Yosuke
    Ikehara, Masaaki
    [J]. 2021 INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2021,