A hybrid model to predict the hydrological drought in the Tarim River Basin based on CMIP6

被引:0
|
作者
Nina Zhu
机构
[1] East China Normal University,Center for Modern Chinese City Studies and Institute of Urban Development
来源
Climate Dynamics | 2023年 / 61卷
关键词
Hydrological drought; Prediction; Multi-time scale; Hybrid model; Tarim River Basin;
D O I
暂无
中图分类号
学科分类号
摘要
Drought simulation and prediction are of great significance to drought early warning. However, it is difficult to predict hydrological drought in data-scarce areas. To address this problem, Tarim River Basin was selected as a typical representative of the data-scarce inland river basin in China, we constructed a hybrid model by combining the complete ensemble empirical mode decomposition with adaptive noise and the long short-term memory method to predict hydrological drought from 2022 to 2100 based on CMIP6. The results show that meteorological drought has quasi-3-month, quasi-5-month, quasi-7-month, quasi-1-year, quasi-2-year, quasi-4-year, quasi-9-year, quasi-17-year and quasi-54-year cycles. Hydrological drought has quasi-3-month, quasi-5-month, quasi-6-month, quasi-1-year, quasi-2-year, quasi-4-year, quasi-9-year, quasi-29-year and quasi-32-year cycles. The components of meteorological drought and hydrological drought have significant correlations on monthly, interannual, and interdecadal scales, with correlation coefficients of 0.282, 0.573, and 0.340, respectively, and p values of 0.000. The hybrid model had a better prediction accuracy (R2 = 0.951, MAE = 0.131, NSE = 0.951, d index = 0.987) than previous studies. The trend of the hydrological drought index in the sustainable development model (SSP1-2.6) shows a trend of increasing severity with a rate of − 0.004/10 years from 2022 to 2100. And from the sustainable development model (SSP1-2.6) to the unbalanced development model (SSP5-8.5), the hydrological drought gradually becomes more serious. This study provides a new mechanism for predicting hydrological drought in data-scarce areas and is of great significance for the early warning of hydrological drought in this area.
引用
收藏
页码:4185 / 4201
页数:16
相关论文
共 50 条
  • [1] A hybrid model to predict the hydrological drought in the Tarim River Basin based on CMIP6
    Zhu, Nina
    CLIMATE DYNAMICS, 2023, 61 (9-10) : 4185 - 4201
  • [2] Estimation of runoff and hydrological drought in the Jinsha River Basin based on CMIP6
    Zhang D.
    Liang H.
    He X.
    Shi Y.
    Water Resources Protection, 2023, 39 (06) : 53 - 62
  • [3] Hydrological assessment of the Tungabhadra River Basin based on CMIP6 GCMs and multiple hydrological models
    Rudraswamy, G. K.
    Manikanta, Velpuri
    Umamahesh, Nanduri
    JOURNAL OF WATER AND CLIMATE CHANGE, 2023, 14 (05) : 1371 - 1394
  • [4] Evaluation of historical and future precipitation changes in CMIP6 over the Tarim River Basin
    Zuo, Jingping
    Qian, Cuncun
    THEORETICAL AND APPLIED CLIMATOLOGY, 2022, 150 (3-4) : 1659 - 1675
  • [5] Evaluation of historical and future precipitation changes in CMIP6 over the Tarim River Basin
    Jingping Zuo
    Cuncun Qian
    Theoretical and Applied Climatology, 2022, 150 : 1659 - 1675
  • [6] Projection of Changes in Rainfall and Drought Based on CMIP6 Scenarios on the Ca River Basin, Vietnam
    Shin, Ju-Young
    Chien, Pham Van
    Um, Myoung-Jin
    Kim, Hanbeen
    Sung, Kyungmin
    WATER, 2024, 16 (13)
  • [7] Insights from CMIP6 SSP scenarios for future characteristics of propagation from meteorological drought to hydrological drought in the Pearl River Basin
    Zhou, Zhaoqiang
    Ding, Yibo
    Fu, Qiang
    Wang, Can
    Wang, Yao
    Cai, Hejiang
    Liu, Suning
    Huang, Shengzhi
    Shi, Haiyun
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 899
  • [8] A comparative assessment of CMIP5 and CMIP6 in hydrological responses of the Yellow River Basin, China
    Guo, Yuxue
    Yu, Xinting
    Xu, Yue-Ping
    Wang, Guoqing
    Xie, Jingkai
    Gu, Haiting
    HYDROLOGY RESEARCH, 2022, 53 (06): : 867 - 891
  • [9] Hydrological response under CMIP6 climate projection in Astore River Basin, Pakistan
    Ali, Zeshan
    Iqbal, Mudassar
    Khan, Ihsan Ullah
    Masood, Muhammad Umer
    Umer, Muhammad
    Lodhi, Muhammad Usama Khan
    Tariq, Muhammad Atiq Ur Rehman
    JOURNAL OF MOUNTAIN SCIENCE, 2023, 20 (08) : 2263 - 2281
  • [10] Hydrological response under CMIP6 climate projection in Astore River Basin, Pakistan
    Zeshan ALI
    Mudassar IQBAL
    Ihsan Ullah KHAN
    Muhammad Umer MASOOD
    Muhammad UMER
    Muhammad Usama Khan LODHI
    Muhammad Atiq Ur Rehman TARIQ
    Journal of Mountain Science, 2023, 20 (08) : 2263 - 2281