A C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-Conforming Arbitrary-Order Two-Dimensional Virtual Element Method for the Fourth-Order Phase-Field Equation

被引:0
|
作者
Dibyendu Adak
Gianmarco Manzini
Hashem M. Mourad
JeeYeon N. Plohr
Lampros Svolos
机构
[1] Universidad del Bío-Bío,GIMNAP, Departamento de Matemática
[2] Los Alamos National Laboratory,Applied Mathematics and Plasma Physics, T
[3] Los Alamos National Laboratory,5, Theoretical Division
[4] Los Alamos National Laboratory,Fluid Dynamics and Solid Mechanics, T
关键词
Two-dimensional phase field equation; Virtual element method; Error analysis; Primary: 65M60; 65N30; Secondary: 65M22;
D O I
10.1007/s10915-023-02409-w
中图分类号
学科分类号
摘要
We present a two-dimensional conforming virtual element method for the fourth-order phase-field equation. Our proposed numerical approach to the solution of this high-order phase-field (HOPF) equation relies on the design of an arbitrary-order accurate, virtual element space with C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1}$$\end{document} global regularity. Such regularity is guaranteed by taking the values of the virtual element functions and their full gradient at the mesh vertices as degrees of freedom. Attaining high-order accuracy requires also edge polynomial moments of the trace of the virtual element functions and their normal derivatives. In this work, we detail the scheme construction, and prove its convergence by deriving error estimates in different norms. A set of representative test cases allows us to assess the behavior of the method.
引用
收藏
相关论文
共 50 条