Existence Theory for an Arbitrary Order Fractional Differential Equation with Deviating Argument

被引:0
|
作者
Youhui Su
Zhaosheng Feng
机构
[1] Xuzhou University of Technology,School of Mathematical Physics
[2] University of Texas-Pan American,Department of Mathematics
来源
关键词
Positive solution; Fractional differential equation; Deviating argument; Riemann-Liouville integral; Fixed point theorems; 34A08; 34B18; 34K37;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with the existence criteria for positive solutions of the following nonlinear arbitrary order fractional differential equations with deviating argument \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left \{\begin{array}{l@{\quad}l}D_{0^+}^{\alpha}u(t)+h(t)f(u(\theta(t)))=0, & t\in ( 0,1 ),\ n-1<\alpha\leq n,\\[3pt]u^{(i)}(0)=0, & i=0,1,2,\ldots,n-2,\\[3pt][D_{0^+}^{\beta} u(t)]_{t=1}=0, & 1\leq\beta\leq n-2,\end{array} \right .$$\end{document} where n>3 (n∈ℕ), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_{0^{+}}^{\alpha}$\end{document} is the standard Riemann-Liouville fractional derivative of order α,f:[0,∞)→[0,∞), h(t):[0,1]→(0,∞) and θ:(0,1)→(0,1] are continuous functions. Some novel sufficient conditions are obtained for the existence of at least one or two positive solutions by using the Krasnosel’skii’s fixed point theorem, and some other new sufficient conditions are derived for the existence of at least triple positive solutions by using the fixed point theorems developed by Leggett and Williams etc. In particular, the existence of at least n or 2n−1 distinct positive solutions is established by using the solution intervals and local properties. From the viewpoint of applications, two examples are given to illustrate the effectiveness of our results.
引用
收藏
页码:81 / 105
页数:24
相关论文
共 50 条