共 50 条
q-Tensor and Exterior Centers, Related Degrees and Capability
被引:0
|作者:
Raimundo Bastos
Ricardo de Oliveira
Guram Donadze
Noraí Romeu Rocco
机构:
[1] Universidade de Brasília,Departamento de Matemática
[2] Campus Darcy Ribeiro,Instituto de Matemática e Estatística
[3] Universidade Federal de Goiás,undefined
[4] Campus Samambaia,undefined
来源:
关键词:
Non-abelian tensor product;
-tensor product;
The degree of the commutator;
Capability;
18G10;
18G50;
20P05;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We introduce intermediate commutators and study their degrees. We define (q,{})\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(q, \{\})$$\end{document}-capable groups and prove that a group G is (q,{})\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(q, \{\})$$\end{document}-capable if and only if Z(q,{})∧(G)=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Z^{\wedge }_{(q, \{\})}(G)=1$$\end{document}.
引用
收藏
相关论文