Hilbert polynomials of non-standard bigraded algebras

被引:0
|
作者
Nguyên Duc Hoang
Ngô Viêt Trung
机构
[1] Hanoi Pedagogical University,Department of Mathematics
[2] Institute of Mathematics,undefined
来源
Mathematische Zeitschrift | 2003年 / 245卷
关键词
Homogeneous Ideal; Hilbert Polynomial; Rees Algebra; Bigraded Algebra; Diagonal Subalgebras;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates Hilbert polynomials of bigraded algebras which are generated by elements of bidegrees $(1,0), (d_1,1),\ldots,(d_r,1)$, where $d_1,\ldots,d_r$ are non-negative integers. The obtained results can be applied to study Rees algebras of homogeneous ideals and their diagonal subalgebras.
引用
收藏
页码:309 / 334
页数:25
相关论文
共 50 条
  • [1] Hilbert polynomials of non-standard bigraded algebras
    Hoang, ND
    Trung, NV
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2003, 245 (02) : 309 - 334
  • [2] A partial characterization of Hilbert quasi-polynomials in the non-standard case
    Massimo Caboara
    Carla Mascia
    [J]. Applicable Algebra in Engineering, Communication and Computing, 2022, 33 : 3 - 20
  • [3] A partial characterization of Hilbert quasi-polynomials in the non-standard case
    Caboara, Massimo
    Mascia, Carla
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2022, 33 (01) : 3 - 20
  • [4] Standard bigraded Hilbert functions
    Crona, K
    [J]. COMMUNICATIONS IN ALGEBRA, 2006, 34 (02) : 425 - 462
  • [5] On Non-standard Hilbert Functions
    Bagheri, Amir
    Rahmati-Asghar, Rahim
    [J]. ALGEBRA COLLOQUIUM, 2018, 25 (01) : 71 - 80
  • [6] On orthogonal polynomials spanning a non-standard flag
    Gomez-Ullate, David
    Kamran, Niky
    Milson, Robert
    [J]. ALGEBRAIC ASPECTS OF DARBOUX TRANSFORMATIONS, QUANTUM INTEGRABLE SYSTEMS AND SUPERSYMMETRIC QUANTUM MECHANICS, 2012, 563 : 51 - +
  • [7] Hilbert-Poincare series of bigraded algebras.
    Robbiano, L
    Valla, G
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1998, 1B (03): : 521 - 540
  • [8] Non-standard tight closure for affine ℂ-algebras
    Hans Schoutens
    [J]. manuscripta mathematica, 2003, 111 : 379 - 412
  • [9] Probabilities defined on standard and non-standard cylindric set algebras
    Ferenczi, Miklos
    [J]. SYNTHESE, 2015, 192 (07) : 2025 - 2033
  • [10] Probabilities defined on standard and non-standard cylindric set algebras
    Miklós Ferenczi
    [J]. Synthese, 2015, 192 : 2025 - 2033