Sensitivity Study of Simulation Parameters Controlling CO2 Trapping Mechanisms in Saline Formations

被引:0
|
作者
Weon Shik Han
Kue-Young Kim
Richard P. Esser
Eungyu Park
Brian J. McPherson
机构
[1] University of Wisconsin-Milwaukee,Department of Geosciences
[2] Korea Institute of Geoscience and Mineral Resources,Geologic Environment Division
[3] University of Utah,Energy and Geosciences Institute
[4] Kyungpook National University,Department of Geology
[5] University of Utah,Civil and Environmental Engineering
来源
Transport in Porous Media | 2011年 / 90卷
关键词
Carbon dioxide; Geologic sequestration; Residual CO; trapping; Spatial moment; Numerical simulation;
D O I
暂无
中图分类号
学科分类号
摘要
The primary purpose of this study is to understand quantitative characteristics of mobile, residual, and dissolved CO2 trapping mechanisms within ranges of systematic variations in different geologic and hydrologic parameters. For this purpose, we conducted an extensive suite of numerical simulations to evaluate the sensitivities included in these parameters. We generated two-dimensional numerical models representing subsurface porous media with various permutations of vertical and horizontal permeability (kv and kh), porosity (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document}), maximum residual CO2 saturation (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S_{\rm gr}^{\max}}$$\end{document}), and brine density (ρbr). Simulation results indicate that residual CO2 trapping increases proportionally to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k_{\rm v}, k_{\rm h}, S_{\rm gr}^{\max}}$$\end{document} and ρbr but is inversely proportional to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi.}$$\end{document} In addition, the amount of dissolution-trapped CO2 increases with kv and kh, but does not vary with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi }$$\end{document} , and decreases with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S_{\rm gr}^{\max}}$$\end{document} and ρbr. Additionally, the distance of buoyancy-driven CO2 migration increases proportionally to kv and ρbr only and is inversely proportional to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k_{\rm h}, \phi }$$\end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S_{\rm gr}^{\max}}$$\end{document} . These complex behaviors occur because the chosen sensitivity parameters perturb the distances of vertical and horizontal CO2 plume migration, pore volume size, and fraction of trapped CO2 in both pores and formation fluids. Finally, in an effort to characterize complex relationships among residual CO2 trapping and buoyancy-driven CO2 migration, we quantified three characteristic zones. Zone I, expressing the variations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S_{\rm gr}^{\max}}$$\end{document} and kh, represents the optimized conditions for geologic CO2 sequestration. Zone II, showing the variation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} , would be preferred for secure CO2 sequestration since CO2 has less potential to escape from the target formation. In zone III, both residual CO2 trapping and buoyancy-driven migration distance increase with kv and ρbr.
引用
收藏
页码:807 / 829
页数:22
相关论文
共 50 条
  • [1] Sensitivity Study of Simulation Parameters Controlling CO2 Trapping Mechanisms in Saline Formations
    Han, Weon Shik
    Kim, Kue-Young
    Esser, Richard P.
    Park, Eungyu
    McPherson, Brian J.
    [J]. TRANSPORT IN POROUS MEDIA, 2011, 90 (03) : 807 - 829
  • [2] Effects of permeability on CO2 trapping mechanisms and buoyancy-driven CO2 migration in saline formations
    Han, Weon Shik
    Lee, Si-Yong
    Lu, Chuan
    McPherson, Brian J.
    [J]. WATER RESOURCES RESEARCH, 2010, 46
  • [3] Seismic and geoelectric modeling studies of parameters controlling CO2 geostorage in saline formations
    al Hagrey, Said Attia
    Strahser, Matthias
    Rabbel, Wolfgang
    [J]. INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 19 : 796 - 806
  • [4] Numerical sensitivity analysis of CO2 mineralization trapping mechanisms in a deep saline aquifer
    Bello, Ayomikun
    Dorhjie, Desmond Batsa
    Ivanova, Anastasia
    Cheremisin, Alexey
    [J]. CHEMICAL ENGINEERING SCIENCE, 2024, 283
  • [5] Experimental Study of CO2 Injection Into Saline Formations
    Cinar, Y.
    Riaz, A.
    Tchelepi, H. A.
    [J]. SPE JOURNAL, 2009, 14 (04): : 588 - 594
  • [6] Simulation and Optimization of Trapping Processes for CO2 Storage in Saline Aquifers
    Nghiem, L.
    Shrivastava, V.
    Kohse, B.
    Hassam, M.
    Yang, C.
    [J]. JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 2010, 49 (08): : 15 - 22
  • [7] CO2 Sequestration Overview in Geological Formations: Trapping Mechanisms Matrix Assessment
    Al Hameli, Fatima
    Belhaj, Hadi
    Al Dhuhoori, Mohammed
    [J]. ENERGIES, 2022, 15 (20)
  • [8] A 2D modeling study of different mechanisms of CO2 trapping in deep saline aquifers
    Zhang, W.
    Li, Y.
    Xu, T.
    Yang, Z.
    [J]. WATER-ROCK INTERACTION, VOLS 1 AND 2, PROCEEDINGS, 2007, : 681 - 685
  • [9] The coupled simulator ECLIPSE - OpenGeoSys for the simulation of CO2 storage in saline formations
    Graupner, Bastian J.
    Li, Dedong
    Bauer, Sebastian
    [J]. 10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 3794 - 3800
  • [10] CO2 sequestration in subsurface geological formations: A review of trapping mechanisms and monitoring techniques
    Massarweh, Osama
    Abushaikha, Ahmad S.
    [J]. EARTH-SCIENCE REVIEWS, 2024, 253