Learning block-structured incoherent dictionaries for sparse representation用于稀疏表示的块结构非相干字典学习方法

被引:0
|
作者
YongQin Zhang
JinSheng Xiao
ShuHong Li
CaiYun Shi
GuoXi Xie
机构
[1] Northwest University,School of Information Science and Technology
[2] Wuhan University,School of Electronic Information
[3] Henan University of Economics and Law,College of Computer and Information Engineering
[4] Chinese Academy of Sciences,Shenzhen Key Laboratory for MRI, Shenzhen Institutes of Advanced Technology
来源
关键词
dictionary learning; sparse representation; sparse coding; block sparsity; mutual coherence; 字典学习; 稀疏表示; 稀疏编码; 块稀疏; 互相干性; 102302;
D O I
暂无
中图分类号
学科分类号
摘要
Dictionary learning is still a challenging problem in signal and image processing. In this paper, we propose an efficient block-structured incoherent dictionary learning algorithm for sparse representations of image signals. The constrained minimization of dictionary learning is achieved by iteratively alternating between sparse coding and dictionary update. Without relying on any prior knowledge of the group structure for the input data, we develop a two-stage clustering method that identifies the underlying block structure of the dictionary under certain restricted constraints. The two-stage clustering method mainly consists of affinity propagation and agglomerative hierarchical clustering. To meet the conditions of both the upper bound and the lower bound of the mutual coherence of dictionary atoms, we introduce a regularization term for the objective function to adjust the block coherence of the overcomplete dictionary. The experiments on synthetic data and real images demonstrate that the proposed dictionary learning algorithm has lower representation error, higher visual quality and better reconstructed results than most of the state-of-the-art methods.
引用
收藏
页码:1 / 15
页数:14
相关论文
共 6 条
  • [1] Learning block-structured incoherent dictionaries for sparse representation
    Zhang YongQin
    Xiao JinSheng
    Li ShuHong
    Shi CaiYun
    Xie Guoxi
    SCIENCE CHINA-INFORMATION SCIENCES, 2015, 58 (10) : 1 - 15
  • [2] Learning block-structured incoherent dictionaries for sparse representation
    ZHANG YongQin
    XIAO JinSheng
    LI ShuHong
    SHI CaiYun
    XIE GuoXi
    ScienceChina(InformationSciences), 2015, 58 (10) : 79 - 93
  • [3] 带边界条件约束的非相干字典学习方法及其稀疏表示
    汤红忠
    张小刚
    陈华
    程炜
    唐美玲
    自动化学报, 2015, 41 (02) : 312 - 319
  • [4] 基于字典学习与稀疏表示的非结构化道路分割方法
    肖良
    戴斌
    吴涛
    方宇强
    吉林大学学报(工学版), 2013, 43(S1) (工学版) : 384 - 388
  • [5] 基于字典学习与稀疏表示的非结构化道路分割方法
    肖良
    戴斌
    吴涛
    方宇强
    吉林大学学报(工学版), 2013, (S1) : 384 - 388
  • [6] 基于字典学习与稀疏表示的非结构化道路分割方法
    肖良
    戴斌
    吴涛
    方宇强
    吉林大学学报(工学版) , 2013, (工学版) : 384 - 388