Totally Disconnected and Locally Compact Heisenberg-Weyl Groups

被引:0
|
作者
A. Vourdas
机构
[1] University of Bradford,Department of Computing
关键词
Harmonic analysis; -adic numbers; Topological groups; 43A25; 11S99;
D O I
暂无
中图分类号
学科分类号
摘要
Harmonic analysis on ℤ(pℓ) and the corresponding representation of the Heisenberg-Weyl group HW[ℤ(pℓ),ℤ(pℓ),ℤ(pℓ)], is studied. It is shown that the HW[ℤ(pℓ),ℤ(pℓ),ℤ(pℓ)] with a homomorphism between them, form an inverse system which has as inverse limit the profinite representation of the Heisenberg-Weyl group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak {HW}[{\mathbb{Z}}_{p},{\mathbb{Z}}_{p},{\mathbb{Z}}_{p}]$\end{document}. Harmonic analysis on ℤp is also studied. The corresponding representation of the Heisenberg-Weyl group HW[(ℚp/ℤp),ℤp,(ℚp/ℤp)] is a totally disconnected and locally compact topological group.
引用
收藏
页码:748 / 767
页数:19
相关论文
共 50 条