Automorphism groups of computably enumerable predicates

被引:0
|
作者
Combarro E.F. [1 ]
机构
[1] Departamento de Informatica, Universidad de Oviedo, Campus de Viesques, Gijon
关键词
Automorphism group; Computably enumerable predicate; Homomorphism;
D O I
10.1023/A:1020975619422
中图分类号
学科分类号
摘要
We study automorphism groups of two important predicates in computability theory: the predicate x ∈ Wy and the graph of a universal partially computable function. It is shown that all automorphisms of the predicates in question are computable. The actions of the automorphism groups on some index sets are examined, and we establish a number of results on the structure of these. We also look into homomorphisms of the two predicates. In this case the situation changes: all homomorphisms of the universal function are computable, but in each Turing degree, homomorphisms of x ∈ Wy exist. © 2002 Plenum Publishing Corporation.
引用
收藏
页码:285 / 294
页数:9
相关论文
共 50 条
  • [1] Every computably enumerable random real is provably computably enumerable random
    Calude, Cristian S.
    Hay, Nicholas J.
    LOGIC JOURNAL OF THE IGPL, 2009, 17 (04) : 351 - 374
  • [2] On computably enumerable structures
    Khoussainov B.
    Lobachevskii Journal of Mathematics, 2014, 35 (4) : 339 - 347
  • [3] A Computably Enumerable Partial Ordering Without Computably Enumerable Maximal Chains and Antichains
    A. S. Morozov
    Siberian Mathematical Journal, 2018, 59 : 463 - 469
  • [4] A Computably Enumerable Partial Ordering Without Computably Enumerable Maximal Chains and Antichains
    Morozov, A. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (03) : 463 - 469
  • [5] Computably Enumerable Partial Orders
    Cholak, Peter A.
    Dzhafarov, Damir D.
    Schweber, Noah
    Shore, Richard A.
    COMPUTABILITY-THE JOURNAL OF THE ASSOCIATION CIE, 2012, 1 (02): : 99 - 107
  • [6] Computably Enumerable Equivalence Relations
    Gao S.
    Gerdes P.
    Studia Logica, 2001, 67 (1) : 27 - 59
  • [7] Relatively computably enumerable reals
    Bernard A. Anderson
    Archive for Mathematical Logic, 2011, 50 : 361 - 365
  • [8] Presentations of computably enumerable reals
    Downey, RG
    LaForte, GL
    THEORETICAL COMPUTER SCIENCE, 2002, 284 (02) : 539 - 555
  • [9] Relatively computably enumerable reals
    Anderson, Bernard A.
    ARCHIVE FOR MATHEMATICAL LOGIC, 2011, 50 (3-4): : 361 - 365
  • [10] A hierarchy of computably enumerable reals
    Zheng, Xizhong
    FUNDAMENTA INFORMATICAE, 2008, 83 (1-2) : 219 - 230