Disjoint Paths in Graphs I,¶3-planar Graphs and Basic Obstructions

被引:0
|
作者
Xingxing Yu
机构
[1] School of Mathematics,
[2] Georgia Institute of Technology,undefined
[3] Atlanta,undefined
[4] GA 30332,undefined
[5] USA,undefined
[6] yu@math.gatech.edu,undefined
关键词
Mathematics Subject Classification2000: 05C38¶Key words and phrases: disjoint paths, linkage, planar graph;
D O I
10.1007/s000260300006
中图分类号
学科分类号
摘要
Let G be a graph,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \{a,b,c\}\subseteq V(G) $\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \{a',b',c'\}\subseteq V(G) $\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \{a,b,c\}\neq \{a',b',c'\} $\end{document}. We say that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ (G,\{a,c\}, \{a',c'\}, (b, b')) $\end{document} is an obstruction if, for any three vertex disjoint paths from {a, b, c} to {a', b', c'} in G, one path is from b to b'. Robertson and Seymour asked the problem of characterizing all obstructions. In this paper, we present a list of "basic" obstructions and show how to produce other obstructions from these basic ones. We also prove results about disjoint paths in graphs. Results in this paper will be used in subsequent papers to characterize all obstructions.
引用
收藏
页码:89 / 103
页数:14
相关论文
共 50 条
  • [1] On Shortest Disjoint Paths in Planar Graphs
    Kobayashi, Yusuke
    Sommer, Christian
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 293 - +
  • [2] On shortest disjoint paths in planar graphs
    Kobayashi, Yusuke
    Sommer, Christian
    DISCRETE OPTIMIZATION, 2010, 7 (04) : 234 - 245
  • [3] Edge-disjoint paths in planar graphs
    Chekuri, C
    Khanna, S
    Shepherd, FB
    45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, : 71 - 80
  • [4] EDGE-DISJOINT PATHS IN PLANAR GRAPHS
    FRANK, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 39 (02) : 164 - 178
  • [5] Length-bounded disjoint paths in planar graphs
    van der Holst, H
    de Pina, JC
    DISCRETE APPLIED MATHEMATICS, 2002, 120 (1-3) : 251 - 261
  • [6] DISJOINT PATHS IN GRAPHS
    SEYMOUR, PD
    DISCRETE MATHEMATICS, 1980, 29 (03) : 293 - 309
  • [7] On the Density of Non-simple 3-Planar Graphs
    Bekos, Michael A.
    Kaufmann, Michael
    Raftopoulou, Chrysanthi N.
    GRAPH DRAWING AND NETWORK VISUALIZATION (GD 2016), 2016, 9801 : 344 - 356
  • [8] Improved Approximation for Node-Disjoint Paths in Planar Graphs
    Chuzhoy, Julia
    Kim, David H. K.
    Li, Shi
    STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, : 556 - 569
  • [9] A FASTER ALGORITHM FOR EDGE-DISJOINT PATHS IN PLANAR GRAPHS
    KAUFMANN, M
    KLAR, G
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 557 : 336 - 348
  • [10] Maximum edge-disjoint paths problem in planar graphs
    Xia, Mingji
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2007, 4484 : 566 - 572