Gromov hyperbolicity of negatively curved Finsler manifolds

被引:0
|
作者
Yong Fang
机构
[1] Université de Cergy-Pontoise,Département de Mathématiques
来源
Archiv der Mathematik | 2011年 / 97卷
关键词
37A35; 34D20; 37D35; Finsler metric; -Hyperbolicity;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M, F) be a closed C∞ Finsler manifold. The lift of the Finsler metric F to the universal covering space defines an asymmetric distance \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde d}$$\end{document} on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde M}$$\end{document}. It is well-known that the classical comparison theorem of Aleksandrov does not exist in the Finsler setting. Therefore, it is necessary to introduce new Finsler tools for the study of the asymmetric metric space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\widetilde M, \widetilde d)}$$\end{document}. In this paper, by using the geometric flip map and the unstable-stable angle introduced in [2], we prove that if (M, F) is a closed Finsler manifold of negative flag curvature, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\widetilde M, \widetilde d)}$$\end{document} is an asymmetric δ-hyperbolic space in the sense of Gromov.
引用
收藏
页码:281 / 288
页数:7
相关论文
共 50 条