Let (M, F) be a closed C∞ Finsler manifold. The lift of the Finsler metric F to the universal covering space defines an asymmetric distance \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\widetilde d}$$\end{document} on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\widetilde M}$$\end{document}. It is well-known that the classical comparison theorem of Aleksandrov does not exist in the Finsler setting. Therefore, it is necessary to introduce new Finsler tools for the study of the asymmetric metric space \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${(\widetilde M, \widetilde d)}$$\end{document}. In this paper, by using the geometric flip map and the unstable-stable angle introduced in [2], we prove that if (M, F) is a closed Finsler manifold of negative flag curvature, then \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${(\widetilde M, \widetilde d)}$$\end{document} is an asymmetric δ-hyperbolic space in the sense of Gromov.
机构:
Univ Fed Fluminense, Dept Matemat, Campus Aterrado, BR-27213145 Volta Redonda, RJ, BrazilUniv Fed Fluminense, Dept Matemat, Campus Aterrado, BR-27213145 Volta Redonda, RJ, Brazil
Chimenton, Alessandro Gaio
Gomes, Jose Barbosa
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Juiz de Fora, Dept Matemat, BR-36036900 Juiz De Fora, MG, BrazilUniv Fed Fluminense, Dept Matemat, Campus Aterrado, BR-27213145 Volta Redonda, RJ, Brazil
Gomes, Jose Barbosa
Ruggiero, Rafael O.
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-22453900 Rio De Janeiro, RJ, BrazilUniv Fed Fluminense, Dept Matemat, Campus Aterrado, BR-27213145 Volta Redonda, RJ, Brazil