Dorey’s Rule and the q-Characters of Simply-Laced Quantum Affine Algebras

被引:0
|
作者
C. A. S. Young
R. Zegers
机构
[1] Kyoto University,Yukawa Institute for Theoretical Physics
[2] Université Paris-Sud 11/CNRS,Laboratoire de Physique Théorique
来源
关键词
Fundamental Representation; Dynkin Diagram; Fuse Rule; Fundamental Weight; Black Node;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${U_q(\widehat{\mathfrak g})}$$\end{document} be the quantum affine algebra associated to a simply-laced simple Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{g}}$$\end{document} . We examine the relationship between Dorey’s rule, which is a geometrical statement about Coxeter orbits of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{g}}$$\end{document} -weights, and the structure of q-characters of fundamental representations Vi,a of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${U_q(\widehat{\mathfrak g})}$$\end{document} . In particular, we prove, without recourse to the ADE classification, that the rule provides a necessary and sufficient condition for the monomial 1 to appear in the q-character of a three-fold tensor product \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V_{i,a}\otimes V_{j,b}\otimes V_{k,c}}$$\end{document} .
引用
收藏
页码:789 / 813
页数:24
相关论文
共 50 条