An efficient and unified method for band structure calculations of 2D anisotropic photonic-crystal fibers

被引:0
|
作者
Liu, Qing [1 ,2 ,3 ]
Yang, Hao-Nan [1 ,2 ,3 ]
Li, Tiexiang [1 ,2 ,3 ]
Tian, Heng [4 ]
Yang, Zhanshan [5 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
[2] Southeast Univ, Shing Tung Yau Ctr, Nanjing 210096, Peoples R China
[3] Nanjing Ctr Appl Math, Nanjing 211135, Peoples R China
[4] Sichuan Univ Sci & Engn, Coll Chem & Environm Engn, Zigong 643000, Peoples R China
[5] Qinghai Minzu Univ, Sch Math & Stat, Xining 810007, Peoples R China
基金
中国国家自然科学基金;
关键词
Maxwell's equations; Anisotropic photonic-crystal fiber; FEM; Yee's scheme; Moore-Penrose pseudoinverse; MIXED FINITE-ELEMENTS; DOUBLE-CURL OPERATOR; MAXWELLS EQUATIONS; FAST EIGENSOLVER; GAP;
D O I
10.1007/s10092-024-00572-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, band structure calculations of two dimensional (2D) anisotropic photonic-crystal fibers (PhCFs) are considered. In 2D PhCFs, Maxwell's equations for the transversal electric and magnetic mode become decoupled, but the difficulty, arising from the anisotropic permittivity epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\varvec{\varepsilon }}}$$\end{document} and/or permeability mu,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\varvec{\mu }}},$$\end{document} plaguing the frequency-domain finite difference method, especially the original Yee's scheme, is our top concern. To resolve this difficulty, we re-establish the connection between the lowest order finite element method with the quasi-periodic condition and Yee's scheme using 2D non-orthogonal mesh, whereby the decoupled Maxwell's equations in 2D anisotropic PhCFs are readily discretized into a generalized eigenvalue problem (GEP). Moreover, we spell out the nullspace of the resulting GEP, if it exists, and explicitly construct the Moore-Penrose pseudoinverse of the singular coefficient matrix, whose smallest positive eigenvalues can be solved by the inverse Lanczos method. Extensive band structures of 2D PhCFs are calculated and benchmarked against reliable results to demonstrate the accuracy and efficiency of our method.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] An efficient method for band structure calculations in 2D photonic crystals
    Dobson, DC
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 149 (02) : 363 - 376
  • [2] 2D photonic-crystal optomechanical nanoresonator
    Makles, K.
    Antoni, T.
    Kuhn, A. G.
    Deleglise, S.
    Briant, T.
    Cohadon, P. -F.
    Braive, R.
    Beaudoin, G.
    Pinard, L.
    Michel, C.
    Dolique, V.
    Flaminio, R.
    Cagnoli, G.
    Robert-Philip, I.
    Heidmann, A.
    OPTICS LETTERS, 2015, 40 (02) : 174 - 177
  • [3] Loss effect on 2D photonic crystal band structure
    Zhu, ZQ
    Mu, YM
    Pei, SS
    Physics and Simulation of Optoelectronic Devices XIII, 2005, 5722 : 108 - 114
  • [4] An efficient method for band structure calculations in 3D photonic crystals
    Dobson, DC
    Gopalakrishnan, J
    Pasciak, JE
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 161 (02) : 668 - 679
  • [5] Compact 2D FDTD method for modeling photonic crystal fibers
    Lou, SQ
    Wang, Z
    Ren, GB
    Jian, SS
    APOC 2003: ASIA-PACIFIC OPTICAL AND WIRELESS COMMUNICATIONS; OPTICAL FIBERS AND PASSIVE COMPONENTS, 2003, 5279 : 158 - 164
  • [6] Band structure calculations of 2D photonic pseudoquasicrystals obtainable by holographic lithography
    Dyachenko, P. N.
    Miklyaev, Yu. V.
    PHOTONIC CRYSTAL MATERIALS AND DEVICES III (I.E. V), 2006, 6182
  • [7] Very efficient ultra-short bends on 2D photonic-crystal waveguide on InP substrate
    Talneau, A
    Le Gouezigou, L
    Bouadma, N
    ECOC'01: 27TH EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION, VOLS 1-6, 2001, : 588 - 589
  • [8] Photonic band gap of 2D complex lattice photonic crystal
    关春颖
    苑立波
    Optoelectronics Letters, 2009, 5 (02) : 120 - 123
  • [9] Photonic band gap of 2D complex lattice photonic crystal
    Guan C.-Y.
    Yuan L.-B.
    Optoelectronics Letters, 2009, 5 (2) : 120 - 123
  • [10] Nonlinear equation method for band structure calculations of photonic crystal slabs
    Gao, DS
    Zhou, ZP
    APPLIED PHYSICS LETTERS, 2006, 88 (16)