Stability of hierarchical fuzzy systems generated by Neuro-Fuzzy

被引:0
|
作者
R. Saad
S. K. Halgamuge
机构
[1] University of Melbourne,Department of Mechanical and Manufacturing Engineering, Mechatronics Res. Group
来源
Soft Computing | 2004年 / 8卷
关键词
Hierarchical fuzzy systems; Neuro-Fuzzy; Stability;
D O I
暂无
中图分类号
学科分类号
摘要
Hierarchical implementation provides a way of retaining the interpretability of a fuzzy system when the number of inputs to the system is very high. Existing Neuro-Fuzzy systems capable of constructing fuzzy systems from training data do not address this issue and restrict to the generation of single layer fuzzy systems. This paper first defines a generic hierarchical fuzzy system that can be implemented exploiting the recursion supported by standard programming languages. Secondly it shows that hierarchical fuzzy systems can be generated from a specialised multi-layer perceptron neural network using a heuristic rule extraction algorithm. Finally, the paper provides a proof for the stability of hierarchical fuzzy systems and the verification using simulation examples.
引用
收藏
页码:409 / 416
页数:7
相关论文
共 50 条
  • [1] Stability of hierarchical fuzzy systems generated by Neuro-Fuzzy
    Saad, R
    Halgamuge, SK
    [J]. SOFT COMPUTING, 2004, 8 (06) : 409 - 416
  • [2] Hierarchical Neuro-Fuzzy Systems
    Vellasco, M
    Pacheco, M
    Figueiredo, K
    [J]. COMPUTATIONAL METHODS IN NEURAL MODELING, PT 1, 2003, 2686 : 126 - 135
  • [3] A neuro-fuzzy approach to optimize hierarchical recurrent fuzzy systems
    Nürnberger A.
    Kruse R.
    [J]. Fuzzy Optimization and Decision Making, 2002, 1 (2) : 221 - 248
  • [4] Neuro-fuzzy systems
    Kruse, R
    Nauck, D
    [J]. COMPUTATIONAL INTELLIGENCE: SOFT COMPUTING AND FUZZY-NEURO INTEGRATION WITH APPLICATIONS, 1998, 162 : 230 - 259
  • [5] A hierarchical recurrent neuro-fuzzy system
    Nürnberger, A
    [J]. JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, 2001, : 1407 - 1412
  • [6] Hierarchical neuro-fuzzy quadtree models
    de Souza, FJ
    Vellasco, MMR
    Pacheco, MAC
    [J]. FUZZY SETS AND SYSTEMS, 2002, 130 (02) : 189 - 205
  • [7] Neuro-fuzzy systems and their applications
    Wilamowski, BM
    [J]. IECON '98 - PROCEEDINGS OF THE 24TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-4, 1998, : T35 - T49
  • [8] Incremental neuro-fuzzy systems
    Fritzke, B
    [J]. APPLICATIONS OF SOFT COMPUTING, 1997, 3165 : 86 - 97
  • [9] Recurrent neuro-fuzzy systems
    Isik, C
    Farrokhi, M
    [J]. 1997 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1997, : 362 - 366
  • [10] Flexible neuro-fuzzy systems
    Rutkowski, L
    Cpalka, K
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (03): : 554 - 574