Approximation of linear canonical wavelet transform on the generalized Sobolev spaces

被引:0
|
作者
Akhilesh Prasad
Z. A. Ansari
机构
[1] Indian School of Mines,Department of Applied Mathematics, Indian Institute of Technology
关键词
Linear canonical transform; Linear canonical wavelet transform; Canonical convolution; Generalized Sobolev spaces; Schwartz space; Generalized weighted Sobolev space; 43A32; 42C40; 46E35; 46F12;
D O I
暂无
中图分类号
学科分类号
摘要
The main objective of this paper is to study the linear canonical wavelet transform (LCWT) on generalized Sobolev space Bp,kξ,A(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{\xi ,A}_{p,k}(\mathbb {R})$$\end{document} and generalized weighted space Lϵ,As,p(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{s,p}_{\epsilon ,A}(\mathbb {R})$$\end{document}. Its approximation properties and convergence of convolution for FψA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^{A}_{\psi }$$\end{document} in the space Bp,kξ,A(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{\xi ,A}_{p,k}(\mathbb {R})$$\end{document} are also discussed. Based on these properties, we prove that the LCWT is linear continuous mapping on the spaces of Fp,A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^{*}_{p,A}$$\end{document} and Up,Ak\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ U^{k}_{p,A}$$\end{document}. The composition of LCWTs is defined and studied some results related to it. Moreover, the boundedness results of LCWT as well as composition of LCWTs on the space Hϵ,As(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{s}_{\epsilon ,A}(\mathbb {R})$$\end{document} are studied.
引用
收藏
页码:855 / 881
页数:26
相关论文
共 50 条