A systematic investigation of certain higher order or deformed soliton equations with (1 + 1) dimensions, from the point of complete integrability, is presented. Following the procedure of Ablowitz, Kaup, Newell and Segur (AKNS) we find that the deformed version of Nonlinear Schrodinger equation, Hirota equation and AKNS equation admit Lax pairs. We report that each of the identified deformed equations possesses the Painlevé property for partial differential equations and admits trilinear representation obtained by truncating the associated Painlevé expansions. Hence the above mentioned deformed equations are completely integrable.
机构:
Univ Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, IndiaUniv Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, India
Sahadevan, R.
Nalinidevi, L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, IndiaUniv Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, India
机构:
Univ Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, IndiaUniv Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, India
Sahadevan, R.
Nalinidevi, L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, IndiaUniv Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, India