Resolvent Estimates for a Compressible Fluid Model of Korteweg Type and Their Application

被引:0
|
作者
Takayuki Kobayashi
Miho Murata
Hirokazu Saito
机构
[1] Osaka University,Division of Mathematical Science, Department of Systems Innovation, Graduate School of Engineering Science
[2] Shizuoka University,Department of Mathematical and System Engineering, Faculty of Engineering
[3] The University of Electro-Communications,Graduate School of Informatics and Engineering
关键词
Resolvent estimate; Compressible viscous fluid; Isothermal fluid; Korteweg-type model; Capillarity; Bounded domain; Exterior domain; Global solvability; Primary: 35Q35; Secondary: 35M12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a resolvent problem arising in the study of a Korteweg-type model of isothermal compressible viscous fluids derived by Dunn and Serrin (1985), and we prove resolvent estimates in bounded and exterior domains. The Korteweg-type model is employed to describe fluid capillarity effects or a liquid-vapor two-phase flow with phase transition as diffuse interface model. Our resolvent problem is obtained from a linearized system of the Korteweg-type model around the steady state (ρ,u)=(1,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\rho ,\mathbf {u})=(1,0)$$\end{document}, where ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} is the fluid density and u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {u}$$\end{document} is the fluid velocity. For bounded domains, we treat variable coefficients and prove that the resolvent set contains C+¯={z∈C:ℜz≥0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathbf {C}_+}=\{z\in \mathbf {C}: \Re z\ge 0\}$$\end{document} under the condition that the pressure function P(ρ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(\rho )$$\end{document} satisfies not only P′(1)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P'(1)\ge 0$$\end{document} but also P′(1)<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P'(1)<0$$\end{document}, where P′(1)=(dP/dρ)(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P'(1)=(dP/d\rho )(1)$$\end{document}. We follow the idea of Kotschote (2014) to handle P′(1)<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P'(1)<0$$\end{document}. For exterior domains, we treat constant coefficients and prove that the resolvent set contains {z∈C+¯:|z|≥δ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{z\in \overline{\mathbf {C}_+} : |z| \ge \delta \}$$\end{document} for any δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta >0$$\end{document} when P′(1)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P'(1)\ge 0$$\end{document}. Furthermore, we introduce a global solvability result for the nonlinear problem in a bounded domain as an application of the resolvent estimate.
引用
收藏
相关论文
共 50 条
  • [1] Resolvent Estimates for a Compressible Fluid Model of Korteweg Type and Their Application
    Kobayashi, Takayuki
    Murata, Miho
    Saito, Hirokazu
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (01)
  • [2] Strong solutions for a compressible fluid model of Korteweg type
    Kotschote, Matthias
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (04): : 679 - 696
  • [3] Compressible Fluid Model of Korteweg Type with Free Boundary Condition: Model Problem
    Saito, Hirokazu
    [J]. FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2019, 62 (03): : 337 - 386
  • [4] Local Solvability for a Compressible Fluid Model of Korteweg Type on General Domains
    Inna, Suma
    Saito, Hirokazu
    [J]. MATHEMATICS, 2023, 11 (10)
  • [5] THE GLOBAL WELL-POSEDNESS FOR THE COMPRESSIBLE FLUID MODEL OF KORTEWEG TYPE
    Murata, Miho
    Shibata, Yoshihiro
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (06) : 6313 - 6337
  • [6] Strong solutions for the compressible barotropic fluid model of Korteweg type in the bounded domain
    Hakho Hong
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [7] Strong solutions for the compressible barotropic fluid model of Korteweg type in the bounded domain
    Hong, Hakho
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (03):
  • [8] Global existence and analyticity of Lp solutions to the compressible fluid model of Korteweg type
    Song, Zihao
    Xu, Jiang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 370 : 101 - 139
  • [9] Global Dynamics of the Compressible Fluid Model of the Korteweg Type in Hybrid Besov Spaces
    Song, Zihao
    Xu, Jiang
    [J]. MATHEMATICS, 2023, 11 (01)
  • [10] Existence of solutions for compressible fluid models of Korteweg type
    Danchin, R
    Desjardins, B
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (01): : 97 - 133