Eα -Ulam type stability of fractional order ordinary differential equations

被引:47
|
作者
Wang J. [1 ,2 ]
Li X. [2 ]
机构
[1] School of Mathematics and Computer Science, Guizhou Normal College
[2] Department of Mathematics, Guizhou University
基金
中国国家自然科学基金;
关键词
Fractional order; Ordinary differential equations;
D O I
10.1007/s12190-013-0731-8
中图分类号
学科分类号
摘要
In this paper, the concepts of Ealpha; -Ulam-Hyers stability, generalized Ealpha; -Ulam-Hyers stability, Ealpha; -Ulam-Hyers-Rassias stability and generalized Ealpha; -Ulam-Hyers-Rassias stability for fractional order ordinary differential equations are raised. Without loss of generality, Ealpha; -Ulam-Hyers-Rassias stability result is derived by using a singular integral inequality of Gronwall type. Two examples are also provided to illustrate our results. © 2013 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:449 / 459
页数:10
相关论文
共 50 条
  • [1] ULAM STABILITY OF ORDINARY DIFFERENTIAL EQUATIONS
    Rus, Ioan A.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2009, 54 (04): : 125 - 133
  • [2] Ulam type stability for conformable fractional differential equations
    Ogrekci, Suleyman
    Basci, Yasemin
    Misir, Adil
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (02) : 807 - 817
  • [3] Ulam type stability for conformable fractional differential equations
    Süleyman Öğrekçi
    Yasemin Başcı
    Adil Mısır
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 807 - 817
  • [4] Ulam's type stability of impulsive ordinary differential equations
    Wang, JinRong
    Feckan, Michal
    Zhou, Yong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) : 258 - 264
  • [5] Ulam-Type Stability Results for Variable Order Ψ-Tempered Caputo Fractional Differential Equations
    O'Regan, Donal
    Hristova, Snezhana
    Agarwal, Ravi P.
    FRACTAL AND FRACTIONAL, 2024, 8 (01)
  • [6] EXISTENCE AND ULAM STABILITY OF SOLUTION TO FRACTIONAL ORDER HYBRID DIFFERENTIAL EQUATIONS OF VARIABLE ORDER
    Limpanukorn, Norravich
    Ngiamsunthorn, Parinya Sa
    THAI JOURNAL OF MATHEMATICS, 2020, 18 (01): : 453 - 463
  • [7] Ulam type stability analysis for generalized proportional fractional differential equations
    Hristova, S.
    Abbas, M. I.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2024, 16 (01) : 114 - 127
  • [8] Ulam stability results for the solutions of nonlinear implicit fractional order differential equations
    Ali, Zeeshan
    Zada, Akbar
    Shah, Kamal
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (04): : 1092 - 1109
  • [9] ULAM TYPE STABILITY FOR A CLASS OF SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS
    Asliyuce, Serkan
    Ogrekci, Suleyman
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (02): : 429 - 435