A primal-dual large-update interior-point algorithm for P*(κ)-LCP based on a new class of kernel functions

被引:0
|
作者
Ping Ji
Ming-wang Zhang
Xin Li
机构
[1] China Three Gorges University,College of Science
关键词
interior-point method; kernel function; complexity; linear complementarity problem; 90C33; 90C51;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a large-update primal-dual interior point algorithm for P*(κ)-linear complementarity problem. The method is based on a new class of kernel functions which is neither classical logarithmic function nor self-regular functions. It is determines both search directions and the proximity measure between the iterate and the center path. We show that if a strictly feasible starting point is available, then the new algorithm has o((1+2k)pn(1plogn+1)2lognε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o\left( {(1 + 2k)p\sqrt n {{\left( {\frac{1}{p}\log n + 1} \right)}^2}\log \frac{n}{\varepsilon }} \right)$$\end{document} iteration complexity which becomes o((1+2k)nlognlognε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o\left( {(1 + 2k)\sqrt n log{\kern 1pt} {\kern 1pt} n\log \frac{n}{\varepsilon }} \right)$$\end{document} with special choice of the parameter p. It is matches the currently best known iteration bound for P*(κ)-linear complementarity problem. Some computational results have been provided.
引用
收藏
页码:119 / 134
页数:15
相关论文
共 50 条
  • [1] A primal-dual large-update interior-point algorithm for P *(κ)-LCP based on a new class of kernel functions
    Ji, Ping
    Zhang, Ming-wang
    Li, Xin
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (01): : 119 - 134
  • [2] A Primal-dual Large-update Interior-point Algorithm for P*(κ)-LCP Based on a New Class of Kernel Functions
    Ping JI
    Ming-wang ZHANG
    Xin LI
    [J]. Acta Mathematicae Applicatae Sinica, 2018, 34 (01) : 119 - 134
  • [3] LARGE-UPDATE PRIMAL-DUAL INTERIOR-POINT ALGORITHM FOR SEMIDEFINITE OPTIMIZATION
    Cho, Gyeong-Mi
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2015, 11 (01): : 29 - 36
  • [4] A Class of New Large-Update Primal-Dual Interior-Point Algorithms for P*(κ) Nonlinear Complementarity Problems
    Chen, Hua Ping
    Zhang, Ming Wang
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (10) : 1979 - 1994
  • [5] A class of new large-update primal-dual interior-point algorithms for P*(κ) nonlinear complementarity problems
    Hua Ping Chen
    Ming Wang Zhang
    [J]. Acta Mathematica Sinica, English Series, 2011, 27 : 1979 - 1994
  • [6] A Class of New Large-Update Primal-Dual Interior-Point Algorithms for P*(κ) Linear Complementarity Problems
    Chen, Huaping
    Zhang, Mingwang
    Zhao, Yuqin
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2009, PT 3, PROCEEDINGS, 2009, 5553 : 77 - 87
  • [7] A new efficient large-update primal-dual interior-point method based on a finite barrier
    Bai, YQ
    El Ghami, M
    Roos, C
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (03) : 766 - 782
  • [8] A class of large-update and small-update primal-dual interior-point algorithms for linear optimization
    Bai, Y. Q.
    Lesaja, G.
    Roos, C.
    Wang, G. Q.
    El Ghami, M.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 138 (03) : 341 - 359
  • [9] COMPLEXITY OF PRIMAL-DUAL INTERIOR-POINT ALGORITHM FOR LINEAR PROGRAMMING BASED ON A NEW CLASS OF KERNEL FUNCTIONS
    Guerdouh, Safa
    Chikouche, Wided
    Touil, Imene
    Yassine, Adnan
    [J]. KYBERNETIKA, 2023, 59 (06) : 827 - 860
  • [10] A Class of Large-Update and Small-Update Primal-Dual Interior-Point Algorithms for Linear Optimization
    Y. Q. Bai
    G. Lesaja
    C. Roos
    G. Q. Wang
    M. El Ghami
    [J]. Journal of Optimization Theory and Applications, 2008, 138 : 341 - 359