Derivation of the Schrödinger Equation from Classical Stochastic Dynamics

被引:0
|
作者
Mário J. de Oliveira
机构
[1] University of São Paulo,Institute of Physics
来源
关键词
Schrödinger equation; Quantum Liouville equation; Stochastic dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
From classical stochastic equations of motion, we derive the quantum Schrödinger equation. The derivation is carried out by assuming that the real and imaginary parts of the wave function ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} are proportional to the coordinates and momenta associated with the degrees of freedom of an underlying classical system. The wave function ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} is assumed to be a complex time-dependent random variable that obeys a stochastic equation of motion that preserves the norm of ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document}. The quantum Liouville equation is obtained by considering that the stochastic part of the equation of motion changes the phase of ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} but not its absolute value. The Schrödinger equation follows from the Liouville equation. The wave function ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document} obeying the Schrödinger equation is related to the stochastic wave function by |ψ|2=⟨|ϕ|2⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\psi |^2=\langle |\phi |^2\rangle$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Derivation of the Schrödinger Equation from Classical Stochastic Dynamics
    de Oliveira, Mario J.
    BRAZILIAN JOURNAL OF PHYSICS, 2024, 54 (02)
  • [2] Derivation of the Schrödinger equation from QED
    Efthimiades, Spyros
    EUROPEAN JOURNAL OF PHYSICS, 2024, 45 (03)
  • [3] Exploring the nonclassical dynamics of the "classical"Schrödinger equation
    Navia, David
    Sanz, Angel S.
    ANNALS OF PHYSICS, 2024, 463
  • [4] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [5] Derivation from Bloch Equation to von Neumann Equation to Schrödinger–Pauli Equation
    Lihong V. Wang
    Foundations of Physics, 2022, 52
  • [6] Derivation of a generalized Schrödinger equation from the theory of scale relativity
    Pierre-Henri Chavanis
    The European Physical Journal Plus, 132
  • [7] Classical trajectories as solutions of the Schrödinger equation
    Mikhail L. Strekalov
    Journal of Mathematical Chemistry, 2016, 54 : 393 - 402
  • [8] On the Derivation of the Time-Dependent Equation of Schrödinger
    John S. Briggs
    Jan M. Rost
    Foundations of Physics, 2001, 31 : 693 - 712
  • [9] Stochastic Schrödinger equation for hot-carrier dynamics in plasmonic systems
    Dall'Osto, Giulia
    Vanzan, Mirko
    Corni, Stefano
    Marsili, Margherita
    Coccia, Emanuele
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (12):
  • [10] Prequantum Classical Statistical Field Theory: Schrödinger Dynamics of Entangled Systems as a Classical Stochastic Process
    Andrei Khrennikov
    Foundations of Physics, 2011, 41 : 317 - 329