Layered convolutional dictionary learning for sparse coding itemsets

被引:0
|
作者
Sameen Mansha
Hoang Thanh Lam
Hongzhi Yin
Faisal Kamiran
Mohsen Ali
机构
[1] The University of Queensland,School of Information Technology and Electrical Engineering
[2] IBM Research,undefined
[3] Information Technology University of The Punjab,undefined
来源
World Wide Web | 2019年 / 22卷
关键词
Interesting itemset mining; Convolutional sparse dictionary learning; Lossless compression; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Dictionary learning for sparse coding has been successfully used in different domains, however, has never been employed for the interesting itemset mining. In this paper, we formulate an optimization problem for extracting a sparse representation of itemsets and show that the discrete nature of itemsets makes it NP-hard. An efficient approximation algorithm is presented which greedily solves maximum set cover to reduce overall compression loss. Furthermore, we incorporate our sparse representation algorithm into a layered convolutional model to learn nonredundant dictionary items. Following the intuition of deep learning, our convolutional dictionary learning approach convolves learned dictionary items and discovers statistically dependent patterns using chi-square in a hierarchical fashion; each layer having more abstract and compressed dictionary than the previous. An extensive empirical validation is performed on thirteen datasets, showing better interpretability and semantic coherence of our approach than two existing state-of-the-art methods.
引用
收藏
页码:2225 / 2239
页数:14
相关论文
共 50 条
  • [1] Layered convolutional dictionary learning for sparse coding itemsets
    Mansha, Sameen
    Hoang Thanh Lam
    Yin, Hongzhi
    Kamiran, Faisal
    Ali, Mohsen
    [J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2019, 22 (05): : 2225 - 2239
  • [2] SEPARABLE DICTIONARY LEARNING FOR CONVOLUTIONAL SPARSE CODING VIA SPLIT UPDATES
    Quesada, Jorge
    Rodriguez, Paul
    Wohlberg, Brendt
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4094 - 4098
  • [3] Submodular Dictionary Learning for Sparse Coding
    Jiang, Zhuolin
    Zhang, Guangxiao
    Davis, Larry S.
    [J]. 2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 3418 - 3425
  • [4] Sparse representation by dictionary combined convolutional sparse coding and K-SVD
    Lian, Qiu-Sheng
    Han, Dong-Mei
    [J]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2012, 34 (07): : 1493 - 1498
  • [5] Online Convolutional Sparse Coding with Sample-Dependent Dictionary
    Wang, Yaqing
    Yao, Quanming
    Kwok, James T.
    Ni, Lionel M.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [6] Confident Kernel Sparse Coding and Dictionary Learning
    Hosseini, K.
    Hammer, Barbara
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 1031 - 1036
  • [7] DICTIONARY LEARNING AND SPARSE CODING FOR UNSUPERVISED CLUSTERING
    Sprechmann, Pablo
    Sapiro, Guillermo
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2042 - 2045
  • [8] An MDL Framework for Sparse Coding and Dictionary Learning
    Ramirez, Ignacio
    Sapiro, Guillermo
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) : 2913 - 2927
  • [9] PERFORMANCE LIMITS OF DICTIONARY LEARNING FOR SPARSE CODING
    Jung, Alexander
    Eldar, Yonina C.
    Goertz, Norbert
    [J]. 2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 765 - 769
  • [10] Multilayer Convolutional Sparse Modeling: Pursuit and Dictionary Learning
    Sulam, Jeremias
    Papyan, Vardan
    Romano, Yaniv
    Elad, Michael
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (15) : 4090 - 4104