The boundary growth of superharmonic functions and positive solutions of nonlinear elliptic equations

被引:0
|
作者
Kentaro Hirata
机构
[1] Akita University,Faculty of Education and Human Studies
来源
Mathematische Annalen | 2008年 / 340卷
关键词
Lipschitz Domain; Harnack Inequality; Nonlinear Elliptic Equation; Borel Measurable Function; Nontangential Limit;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the boundary growth of positive superharmonic functions u on a bounded domain Ω in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{n}$$\end{document} , n ≥ 3, satisfying the nonlinear elliptic inequality\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le - \Delta u \le c\delta_{\Omega}(x)^{-\alpha}u^p \quad {\rm in}\ \Omega,$$\end{document}where c >  0, α ≥ 0 and p >  0 are constants, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta_{\Omega}(x)$$\end{document} is the distance from x to the boundary of Ω. The result is applied to show a Harnack inequality for such superharmonic functions. Also, we study the existence of positive solutions, with singularity on the boundary, of the nonlinear elliptic equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta u + Vu = f(x, u) \quad {\rm in} \ \Omega,$$\end{document}where V and f are Borel measurable functions conditioned by the generalized Kato class.
引用
收藏
页码:625 / 645
页数:20
相关论文
共 50 条